Community responsibility for a safety culture in academic chemistry.

This is another approximate transcript of a part of the conversation I had with Chemjobber that became a podcast. This segment (from about 29:55 to 52:00) includes our discussion of what a just punishment might look like for PI Patrick Harran for his part in the Sheri Sangji case. From there, our discussion shifted to the question of how to make the culture of academic chemistry safer:

Chemjobber: One of the things that I guess I’ll ask is whether you think we’ll get justice out of this legal process in the Sheri Sangji case.

Janet: I think about this, I grapple with this, and about half the time when I do, I end up thinking that punishment — and figuring out the appropriate punishment for Patrick Harran — doesn’t even make my top-five list of things that should come out of all this. I kind of feel like a decent person should feel really, really bad about what happened, and should devote his life forward from here to making the conditions that enabled the accident that killed Sheri Sangji go away. But, you know, maybe he’s not a decent person. Who the heck can tell? And certainly, once you put things in the context where you have a legal team defending you against criminal charges — that tends to obscure the question of whether you’re a decent person or not, because suddenly you’ve got lawyers acting on your behalf in all sorts of ways that don’t look decent at all.

Chemjobber: Right.

Janet: I think the bigger question in my mind is how does the community respond? How does the chemistry department at UCLA, how does the larger community of academic chemistry, how do Patrick Harran’s colleagues at UCLA and elsewhere respond to all of this? I know that there are some people who say, “Look, he really fell down on the job safety-wise, and in terms of creating an environment for people working on his behalf, and someone died, and he should do jail time.” I don’t actually know if putting him in jail changes the conditions on the outside, and I’ve said that I think, in some ways, tucking him away in jail for however many months makes it easier for the people who are still running academic labs while he’s incarcerated to say, “OK, the problem is taken care of. The bad actor is out of the pool. Not a problem,” rather than looking at what it is about the culture of academic chemistry that has us devoting so little of our time and energy to making sure we’re doing this safely. So, if it were up to me, if I were the Queen of Just Punishment in the world of academic chemistry, I’ve said his job from here on out should be to be Safety in the Research Culture Guy. That’s what he gets to work on. He doesn’t get to go forward and conduct new research on some chemical question like none of this ever happened. Because something happened. Something bad happened, and the reason something bad happened, I think, is because of a culture in academic chemistry where it was acceptable for a PI not to pay attention to safety considerations until something bad happened. And that’s got to change.

Chemjobber: I think it will change. I should point out here that if your proposed punishment were enacted, it would be quite a punishment, because he wouldn’t get to choose what he worked on anymore, and that, to a great extent, is the joy of academic research, that it’s self-directed and that there is lots and lots of freedom. I don’t get to choose the research problems I work on, because I do it for money. My choices are more or less made by somebody else.

Janet: But they pay you.

Chemjobber: But they pay me.

Janet: I think I’d even be OK saying maybe Harran gets to do 50% of his research on self-directed research topics. But the other 50% is he has to go be an evangelist for changing how we approach the question of safety in academic research.

Chemjobber: Right.

Janet: He’s still part of the community, he’s still “one of us,” but he has to show us how we are treading dangerously close to the conditions that led to the really bad thing that happened in his lab, so we can change that.

Chemjobber: Hmm.

Janet: And not just make it an individual thing. I think all of the attempts to boil what happened down to all being the individual responsibility of the technician, or of the PI, or it’s a split between the individual responsibility of one and the individual responsibility of the other, totally misses the institutional responsibility, and the responsibility of the professional community, and how systemic factors that the community is responsible for failed here.

Chemjobber: Hmm.

Janet: And I think sometimes we need individuals to step up and say, part of me acknowledging my personal responsibility here is to point to the ways that the decisions I made within the landscape we’ve got — of what we take seriously, of what’s rewarded and what’s punished — led to this really bad outcome. I think that’s part of the power here is when academic chemists say, “I would be horrified if you jailed this guy because this could have happened in any of our labs,” I think they’re right. I think they’re right, and I think we have to ask how it is that conditions in these academic communities got to the point where we’re lucky that more people haven’t been seriously injured or killed by some of the bad things that could happen — that we don’t even know that we’re walking into because safety gets that short shrift.

Chemjobber: Wow, that’s heavy. I’m not sure whether there are industrial chemists whose primary job is to think about safety. Is part of the issue we have here that safety has been professionalized? We have industrial chemical hygienists and safety engineers. Every university has an EH&S [environmental health and safety] department. Does that make safety somebody else’s problem? And maybe if Patrick Harran were to become a safety evangelist, it would be a way of saying it’s our problem, and we all have to learn, we have to figure out a way to deal with this?

Janet:Yeah. I actually know that there exist safety officers in academic science departments, partly because I serve on some university committees with people who fill that role — so I know they exist. I don’t know how much the people doing research in those departments actually talk with those safety officers before something goes wrong, or how much of it goes beyond “Oh, there’s paperwork we need to make sure is filed in the right place in case there’s an inspection,” or something like that. But it strikes me that safety should be more collaborative. In some ways, wouldn’t that be a more gripping weekly seminar to have in a chemistry department for grad students working in the lab, even just once a month on the weekly seminar, to have a safety roundtable? “Here are the risks that we found out about in this kind of work,” or talking about unforeseen things that might happen, or how do you get started finding out about proper precautions as you’re beginning a new line of research? What’s your strategy for figuring that out? Who do you talk to? I honestly feel like this is a part of chemical education at the graduate level that is extremely underdeveloped. I know there’s been some talk about changing the undergraduate chemistry degree so that it includes something like a certificate program in chemical safety, and maybe that will fix it all. But I think the only thing that fixes it all is really making it part of the day to day lived culture of how we build new knowledge in chemistry, that the safety around how that knowledge gets built is an ongoing part of the conversation.

Chemjobber: Hmm.

Janet: It’s not something we talk about once and then never again. Because that’s not how research works. We don’t say, “Here’s our protocol. We never have to revisit it. We’ll just keep running it until we have enough data, and then we’re done.”

Chemjobber: Right.

Janet: Show me an experiment that’s like that. I’ve never touched an experiment like that in my life.

Chemjobber: So, how many times do you remember your Ph.D. advisor talking to you about safety?

Janet: Zero. He was a really good advisor, he was a very good mentor, but essentially, how it worked in our lab was that the grad students who were further on would talk to the grad students who were newer about “Here’s what you need to be careful about with this reaction, “ or “If you’ve got overflow of your chemical waste, here’s who to call to do the clean-up,” or “Here’s the paperwork you fill out to have the chemical waste hauled away properly.” So, the culture was the people who were in the lab day to day were the keepers of the safety information, and luckily I joined a lab where those grad students were very forthcoming. They wanted to share that information. You didn’t have to ask because they offered it first. I don’t think it happens that way in every lab, though.

Chemjobber: I think you’re right. The thorniness of the problem of turning chemical safety into a day to day thing, within the lab — within a specific group — is you’re relying on this group of people that are transient, and they’re human, so some people really care about it and some people tend not to care about it. I had an advisor who didn’t talk about safety all the time but did, on a number of occasions, yank us all short and say, “Hey, look, what you’re doing is dangerous!” I clearly remember specific admonishments: “Hey, that’s dangerous! Don’t do that!”

Janet: I suspect that may be more common in organic chemistry than in physical chemistry, which is my area. You guys work with stuff that seems to have a lot more potential to do interesting things in interesting ways. The other thing, too, is that in my research group we were united by a common set of theoretical approaches, but we all worked in different kinds of experimental systems which had different kinds of hazards. The folks doing combustion reactions had different things to worry about than me, working with my aqueous reaction in a flow-through reactor, while someone in the next room was working with enzymatic reactions. We were all over the map. Nothing that any of us worked with seemed to have real deadly potential, at least as we were running it, but who knows?

Chemjobber: Right.

Janet: And given that different labs have very different dynamics, that could make it hard to actually implement a desire to have safety become a part of the day to day discussions people are having as they’re building the knowledge. But this might really be a good place for departments and graduate training programs to step up. To say, “OK, you’ve got your PI who’s running his or her own fiefdom in the lab, but we’re the other professional parental unit looking out for your well being, so we’re going to have these ongoing discussions with graduate cohorts made up of students who are working in different labs about safety and how to think about safety where the rubber hits the road.” Actually bringing those discussions out of the research group, the research group meeting, might provide a space where people can become reflective about how things go in their own labs and can see something about how things are being done differently in other labs, and start piecing together strategies, start thinking about what they want the practices to be like when they’re the grown-up chemists running their own labs. How do they want to make safety something that’s part of the job, not an add on that’s being slapped on or something that’s being forgotten altogether.

Chemjobber: Right.

Janet: But of course, graduate training programs would have to care enough about that to figure out how to put the resources on it, to make it happen.

Chemjobber: I’m in profound sympathy with the people who would have to figure out how to do that. I don’t really know anything about the structure of a graduate training program other than, you know, “Do good work, and try to graduate sooner rather than later.” But I assume that in the last 20 to 30 years, there have been new mandates like “OK, you all need to have some kind of ethics component”

Janet: — because ethics coursework will keep people from cheating! Except that’s an oversimplified equation. But ethics is a requirement they’re heaping on, and safety could certainly be another. The question is how to do that sensibly rather than making it clear that we’re doing this only because there’s a mandate from someone else that we do it.

Chemjobber: One of the things that I’ve always thought about in terms of how to better inculcate safety in academic labs is maybe to have training that happens every year, that takes a week. New first-years come in and you get run through some sort of a lab safety thing where you go and you set up the experiment and weird things are going to happen. It’s kind of an artificial environment where you have to go in and run a dangerous reaction as a drill that reminds you that there are real-world consequences. I think Chembark talked about how, in Caltech Safety Day, they brought out one of the lasers and put a hole through an apple. Since Paul is an organic chemist, I don’t think he does that very often, but his response was “Oh, if I enter one of these laser labs, I should probably have my safety glasses on.” There’s a limit to the effectiveness of that sort of stuff. you have to really, really think about how to design it, and a week out of a year is a long time, and who’s going to run it? I think your idea of the older students in the lab being the ones who really do a lot of the day to day safety stuff is important. What happens when there are no older students in the lab?

Janet: That’s right, when you’re the first cohort in the PI’s lab.

Chemjobber: Or, when there hasn’t been much funding for students and suddenly now you have funding for students.

Janet: And there’s also the question of going from a sparsely populated lab to a really crowded lab when you have the funding but you don’t suddenly have more lab space. And crowded labs have different kinds of safety concerns than sparsely populated labs.

Chemjobber: That’s very true.

Janet: I also wonder whether the “grown-up” chemists, the postdocs and the PIs, ought to be involved in some sort of regular safety … I guess casting it as “training” is likely to get people’s hackles up, and they’re likely to say, “I have even less time for this than my students do.”

Chemjobber: Right.

Janet: But at the same time, pretending that they learned everything they need to know about safety in grad school? Really? Really you did? When we’re talking now about how maybe the safety training for graduate students is inadequate, you magically got the training that tells you everything you need to know from here on out about safety? That seems weird. And also, presumably, the risks of certain kinds of procedures and certain kinds of reagents — that’s something about which our knowledge continues to increase as well. So, finding ways to keep up on that, to come up with safer techniques and better responses when things do go wrong — some kind of continuing education, continuing involvement with that. If there was a way to do it to include the PIs and the people they’re employing or training, to engage them together, maybe that would be effective.

Chemjobber: Hmm.

Janet: It would at least make it seem less like, “This is education we have to give our students, this is one more requirement to throw on the pile, but we wouldn’t do it if we had the choice, because it gets in the way of making knowledge.” Making knowledge is good. I think making knowledge is important, but we’re human beings making knowledge and we’d like to live long enough to appreciate that knowledge. Graduate students shouldn’t be consumable resources in the knowledge-building the same way that chemical reagents are.

Chemjobber: Yeah.

Janet: Because I bet you the disposal paperwork on graduate students is a fair bit more rigorous than for chemical waste.

Why does lab safety look different to chemists in academia and chemists in industry?

Here’s another approximate transcript of the conversation I had with Chemjobber that became a podcast. In this segment (from about 19:30 to 29:30), we consider how reaction to the Sheri Sangji case sound different when they’re coming from academic chemists than when they’re coming from industry, and we spin some hypotheses about what might be going on behind those differences:

Chemjobber: I know that you wanted to talk about the response of industrial chemists versus academic chemists to the Sheri Sangji case.

Janet: This is one of the things that jumps out at me in the comment threads on your blog posts about the Sangji case. (Your commenters, by the way, are awesome. What a great community of commenters engaging with this stuff.) It really does seem that the commenters who are coming from industry are saying, “These conditions that we’re hearing about in the Harran lab (and maybe in academic labs in general) are not good conditions for producing knowledge as safely as we can.” And the academic commenters are saying, “Oh come on, it’s like this everywhere! Why are you going to hold this one guy responsible for something that could have happened to any of us?” It shines a light on something interesting about how academic labs building knowledge function really differently from industrial labs building knowledge.

Chemjobber: Yeah, I don’t know. It’s very difficult for me to separate out whether it’s culture or law or something else. Certainly I think there’s a culture aspect of it, which is that every large company and most small companies really try hard to have some sort of a safety culture. Whether or not they actually stick to it is a different story, but what I’ve seen is that the bigger the company, the more it really matters. Part of it, I think, is that people are older and a little bit wiser, they’re better at looking over each other’s shoulders and saying, “What are you doing over there?” and “So, you’re planning to do that? That doesn’t sound like a great idea.” It seems like there’s less of that in academia. And then there’s the regulatory aspect of it. Industrial chemists are workers, the companies they’re working for are employers, and there’s a clear legal aspect to that. Even as under-resourced as OSHA is, there is an actual legal structure prepared to deal with accidents. If the Sangji incident had happened at a very large company, most people think that heads would have rolled, letters would have been placed in evaluation files, and careers would be over.

Janet: Or at least the lab would probably have been shut down until a whole bunch of stuff was changed.

Chemjobber: But in academia, it looks like things are different.

Janet: I have some hunches that perhaps support some of your hunches here about where the differences are coming from. First of all, the set-up in academia assumes radical autonomy on the part of the PI about how to run his or her lab. Much of that is for the good as far as allowing different ways to tackle the creative problems about how to ask the scientific questions to better shake loose the piece of knowledge you’re trying to shake loose, or allowing a range of different work habits that might be successful for these people you’re training to be grown-up scientists in your scientific field. And along with that radical autonomy — your lab is your fiefdom — in a given academic chemistry department you’re also likely to have a wide array of chemical sub-fields that people are exploring. So, depending on the size of your department, you can’t necessarily count on there being more than a couple other PIs in the department who really understand your work well enough that they would have deep insight into whether what you’re doing is safe or really dangerous. It’s a different kind of resource that you have available right at hand — there’s maybe a different kind of peer pressure that you have in your immediate professional and work environment acting on the industrial chemist than on the academic chemist. I think that probably plays some role in how PIs in academia are maybe aren’t as up on potential safety risks of new work they’re doing as they might be otherwise. And then, of course, there’s the really different kinds of rewards people are working for in industry versus academia, and how the whole tenure race ends up asking more and more of people with the same 24 hours in the day as anyone else. So, people on the tenure track start asking, “What are the things I’m really rewarded for? Because obviously, if I’m going to succeed, that’s where I have to focus my attention.”

Chemjobber: It’s funny how the “T” word keeps coming up.

Janet: By the same token, in a university system that has consistently tried to male it easier to fire faculty at whim because they’re expensive, I sort of see the value of tenure. I’m not at all argue that tenure is something that academic chemists don’t need. But, it may be that the particulars of how we evaluate people for tenure are incentivizing behaviors that are not helping the safety of the people building the knowledge or the well-being of the people who are training to be grown-ups in these professional communities.

Chemjobber: That’s right. We should just say specifically that in this particular case, Patrick Harran already had tenure, and I believe he is still a chaired professor at UCLA.

Janet: I think maybe the thing to point out is that some of these expectations, some of these standard operating procedures within disciplines in academia, are heavily shaped by the things that are rewarded for tenure, and then for promotion to full professor, and then whatever else. So, even if you’re tenured, you’re still soaking in that same culture that is informing the people who are trying to get permission to stay there permanently rather than being thanked for their six years of service and shown the door. You’re still soaking in that culture that says, “Here’s what’s really important.” Because if something else was really important, then by golly that’s how we’d be choosing who gets to stay here for reals and who’s just passing through.

Chemjobber: Yes.

Janet: I don’t know as much about the typical life cycle of the employee in industrial chemistry, but my sense is that maybe the fact that grad students and postdocs and, to some extent, technicians are sort of transient in the community of academic chemistry might make a difference as well — that they’re seen as people who are passing through, and that the people who are more permanent fixtures in that world either forget that they come in not knowing all the stuff that the people who have been there for a long, long time know, or they’re sort of making a calculation, whether they realize it or not, about how important it is to convey some of this stuff they know to transients in their academic labs.

Chemjobber: Yeah, I think that’s true. Numerically, there’s certainly a lot less turnover in industry than there is in academic labs.

Janet: I would hope so!

Chemjobber: Especially from the bench-worker perspective. It’s unfortunate that layoffs happen (topic for another podcast!), but that seems to be the main source of turnover in industry these days.

Gender bias: ethical implications of an empirical finding.

By now, you may have seen the recently published study by Ross-Macusin et al. in the Proceedings of the National Academy of Sciences entitled “Science faculty’s subtle gender biases favor male students”, or the nice discussion by Ilana Yurkiewicz of why these findings matter.

Briefly, the study involved having science faculty from research-focused universities rate materials from potential student candidates for a lab manager position. The researchers attached names to the application materials — some of them male names, some of them female names — at random, and examined how the ratings of the materials correlated with the names that were attached to them. What they found was that the same application materials got a higher ranking (i.e., a judgment that the applicant would be more qualified for the job) when the attached name was male than when it was female. Moreover, both male and female faculty ranked the same application more highly when attached to a male name.

It strikes me that there are some ethical implications that flow from this study to which scientists (among others) should attend:

  1. Confidence that your judgments are objective is not a guarantee that your judgments are objective, and your intent to be unbiased may not be enough. The results of this study show a pattern of difference in ratings for which the only plausible explanation is the presence of a male name or a female name for the applicant. The faculty members treated the task they were doing as an objective evaluation of candidates based on prior research experience, faculty recommendations, the applicant’s statement, GRE scores, and so forth — that they were sorting out the well-qualified from the less-well-qualified — but they didn’t do that sorting solely on the basis of the actual experience and qualifications described in the application materials. If they had, the rankings wouldn’t have displayed the gendered split they did. The faculty in the study undoubtedly did not mean to bring gender bias to the evaluative task, but the results show that they did, whether they intended to or not.
  2. If you want to build reliable knowledge about the world, it’s helpful to identify your biases so they don’t end up getting mistaken for objective findings. As I’ve mentioned before, objectivity is hard. One of the hardest things about being objective is that fact that so many of our biases are unconscious — we don’t realize that we have them. If you don’t realize that you have a bias, it’s much harder to keep that bias from creeping in to your knowledge-building, from the way you frame the question you’re exploring to how you interpret data and draw conclusions from them. The biases you know about are easier to keep on a short leash.
  3. If a methodologically sound study finds that science faculty have a particular kind of bias, and if you are science faculty, you probably should assume that you might also have that bias. If you happen to have good independent evidence that you do not display the particular bias in question, that’s great — one less unconscious bias that might be messing with your objectivity. However, in the absence of such good independent evidence, the safest assumption to make is that you’re vulnerable to the bias too — even if you don’t feel like you are.
  4. If you doubt the methodologically soundness of a study finding that science faculty have a particular kind of bias, it is your responsibility to identify the methodological flaws. Ideally, you’d also want to communicate with the authors of the study, and with other researchers in the field, about the flaws you’ve identified in the study methodology. This is how scientific communities work together to build a reliable body of knowledge we all can use. And, a responsible scientist doesn’t reject the conclusions of a study just because they don’t match one’s hunches about how things are. The evidence is how scientists know anything.
  5. If there’s reason to believe you have a particular kind of bias, there’s reason to examine what kinds of judgments of yours it might influence beyond the narrow scope of the experimental study. Could gender bias influence whose data in your lab you trust the most? Which researchers in your field you take most seriously? Which theories or discoveries are taken to be important, and which others are taken to be not-so-important? If so, you have to be honest with yourself and recognize the potential for this bias to interfere with your interaction with the phenomena, and with your interaction with other scientists to tackle scientific questions and build knowledge. If you’re committed to building reliable knowledge, you need to find ways to expose the operation of this bias, or to counteract its effects. (Also, to the extent that this bias might play a role in the distribution of rewards like jobs or grants in scientific careers, being honest with yourself probably means acknowledging that the scientific community does not operate as a perfect meritocracy.)

Each of these acknowledgments looks small on its own, but I will not pretend that that makes them easy. I trust that this won’t be a deal-breaker. Scientists do lots of hard things, and people committed to building reliable knowledge about the world should be ready to take on pieces of self-knowledge relevant to that knowledge-building. Even when they hurt.

Technical note about comments.

Comments have been getting stuck in moderation here for longer than usual because my email alerts telling me a comment has been posted and needs to be approved have stopped arriving.

I’ll try to get to the bottom of this (whether it’s an issue with the blog software or my spam filters), but in the meantime, if you’ve tried to post a comment and it is taking a very long time to appear, feel free to email me (drdotfreerideatgmaildotcom) to alert me to the problem.

Dueling narratives: what’s the job market like for scientists and is a Ph.D. worth it?

At the very end of August, Slate posted an essay by Daniel Lametti taking up, yet again, what the value of a science Ph.D. is in a world where the pool of careers for science Ph.D.s in academia and industry is (maybe) shrinking. Lametti, who is finishing up a Ph.D. in neuroscience, expresses optimism that the outlook is not so bleak, reading the tea leaves of some of the available survey data to conclude that unemployment is not much of a problem for science Ph.D.s. Moreover, he points to the rewards of the learning that happens in a Ph.D. program as something that might be values in its own right rather than as a mere instrument to make a living later. (This latter argument will no doubt sound familiar.)

Of course, Chemjobber had to rain on the parade of this youthful optimism. (In the blogging biz, we call that “due diligence”.) Chemjobber critiques Lametti’s reading of the survey data (and points out some important limitations with those data), questions his assertion that a science Ph.D. is a sterling credential to get you into all manner of non-laboratory jobs, reiterates that the opportunity costs of spending years in a Ph.D. program are non-neglible, and reminds us that unemployed Ph.D. scientists do exist.

Beryl Benderly mounts similar challenges to Lametti’s take on the job market at the Science Careers blog.

You’ve seen this disagreement before. And, I reckon, you’re likely to see it again.

But this time, I feel like I’m starting to notice what may be driving these dueling narratives about how things are for science Ph.D.s. It’s not just an inability to pin down the facts about the job markets, or the employment trajectories of those science Ph.D.s. In the end, it’s not even a deep disagreement about what may be valuable in economic or non-economic ways about the training one receives in a science Ph.D. program.

Where one narrative focuses on the overall trends within STEM fields, the other focuses on individual experiences. And, it strikes me that part of what drives the dueling narratives is what feels like a tension between voicing an individual view it may be helpful to adopt for one’s own well-being and acknowledging the existence of systemic forces that tend to create unhelpful outcomes.

Of course, part of the problem in these discussions may be that we humans have a hard time generally reconciling overall trends with individual experiences. Even if it were a true fact that the employment outlook was very, very good for people in your field with Ph.D.s, if you have one of those Ph.D.s and you can’t find a job with it, the employment situation is not good for you. Similarly, if you’re a person who can find happiness (or at least satisfaction) in pretty much whatever situation you’re thrown into, a generally grim job market in your field may not big you very much.

But I think the narratives keep missing each other because of something other than not being able to reconcile the pooled labor data with our own anecdata. I think, at their core, the two narratives are trying to do different things.

* * *

I’ve written before about some of what I found valuable in my chemistry Ph.D. program, including the opportunity to learn how scientific knowledge is made by actually making some. That’s not to say that the experience is without its challenges, and it’s hard for me to imagine taking on those challenges without a burning curiosity, a drive to go deeper than sitting in a classroom and learning the science that others have built.

It can feel a bit like a calling — like what I imagine people learning how to be artists or musicians must feel. And, if you come to this calling in a time where you know the job prospects at the other end are anything but certain, you pretty much have to do the gut-check that I imagine artists and musicians do, too:

Am I brave enough to try this, even though I know there’s a non-negligible chance that I won’t be able to make a career out of it? Is it worth it to devote these years of toil and study, with long hours and low salary, to immersing myself in this world, even knowing I might not get to stay in it?

A couple quick caveats here: I suspect it’s much easier to play music or make art “on the side” after you get home from the job that pays for your food but doesn’t feed your soul than it is to do science on the side. (Maybe this points to the need for community science workspaces?) And, it’s by no means clear that those embarking on Ph.D. training in a scientific field are generally presented with realistic expectations about the job market for Ph.D.s in their field.

Despite the fact that my undergraduate professors talked up a supposed shortage of Ph.D. chemists (one that was not reflected in the labor statistics less than a year later), I somehow came to my own Ph.D. training with the attitude that it was an open question whether I’d be able to get a job as a chemist in academia or industry or a national lab. I knew I was going to leave my graduate program with a Ph.D., and I knew I was going to work.

The rent needed to be paid, and I was well acclimated to a diet that alternated between lentils and ramen noodles, so I didn’t see myself holding out for a dream job with a really high salary and luxe benefits. A career was something I wanted, but the more pressing need was a paycheck.

Verily, by the time I completed my chemistry Ph.D., this was a very pressing need. It’s true that students in a chemistry Ph.D. program are “paid to go to school,” but we weren’t paid much. I kept my head, and credit card balance, mostly above water by being a cyclist rather than a driver, saving money for registration, insurance, parking permits, and gas that my car-owning classmates had to pay. But it took two veterinary emergencies, one knee surgery, and ultimately the binding and microfilming fee I had to pay when I submitted the final version of my dissertation to completely wipe out my savings.

I was ready to teach remedial arithmetic at a local business college for $12 an hour (and significantly less than 40 hours a week) if it came to that. Ph.D. chemist or not, I needed to pay the bills.

Ultimately, I did line up a postdoctoral position, though I didn’t end up taking it because I had my epiphany about needing to become a philosopher. When I was hunting for postdocs, though, I knew that there was still no guarantee of a tenure track job, or a gig at a national lab, or a job in industry at the end of the postdoc. I knew plenty of postdocs who were still struggling to find a permanent job. Even before my philosophy epiphany, I was thinking through other jobs I was probably qualified to do that I wouldn’t hate — because I kind of assumed it would be hard, and that the economy wouldn’t feel like it owed me anything, and that I might be lucky, but I also might not be. Seeing lots of really good people have really bad luck on the job market can do that to a person.

My individual take on the situation had everything to do with keeping me from losing it. It’s healthy to be able to recognize that bad luck is not the same as the universe (or even your chosen professional community) rendering the judgment that you suck. It’s healthy to be able to weather the bad luck rather than be crushed by it.

But, it’s probably also healthy to recognize when there may be systemic forces making it a lot harder than it needs to be to join a professional community for the long haul.

* * *

Indeed, the discussion of the community-level issues in scientific fields is frequently much less optimistic than the individual-level pep-talks people give themselves or each other.

What can you say about a profession that asks people who want to join it to sink as much as a decade into graduate school, and maybe another decade into postdoctoral positions (jobs defined as not permanent) just to meet the training prerequisite for desirable permanent jobs that may not exist in sufficient numbers to accommodate all the people who sacrificed maybe two decades at relatively low salaries for their level of education, who likely had to uproot and change their geographical location at least once, and who succeeded at the research tasks they were asked to take on during that training? And what can you say about that profession when the people asked to embark on this gamble aren’t given anything like a realistic estimate of their likelihood of success?

Much of what people do say frames this as a problem of supply and demand. There are just too many qualified candidates for the available positions, at least from the point of view of the candidates. From the point of view of a hiring department or corporation, the excess of available workers may seem like less of a problem, driving wages downward and making it easier to sell job candidates on positions in “geographically unattractive” locations.

Things might get better for the job seeker with a Ph.D. if the supply of science Ph.D.s were adjusted downward, but this would disrupt another labor pool, graduate students working to generate data for PIs in their graduate labs. Given the “productivity” expectations on those PIs, imposed by institutions and granting agencies, reducing student throughput in Ph.D. programs is likely to make things harder for those lucky enough to have secured tenure track positions in the first place.

The narrative about the community-level issues takes on a different tone depending on who’s telling it, and with which end of the power gradient they identify. Do Ph.D. programs depend on presenting a misleading picture of job prospects and quality of life for Ph.D. holders to create the big pools of student labor on which they depend? Do PIs and administrators running training programs encourage the (mistaken) belief that the academic job market is a perfect meritocracy, and that each new Ph.D.’s failure will be seen as hers alone? Are graduate students themselves to blame for not considering the employment data before embarking on their Ph.D. programs? Are they being spoiled brats when they should recognize that their unemployment numbers are much, much lower than for the population as a whole, that most employed people have nothing like tenure to protect their jobs, and indeed that most people don’t have jobs that have anything to do with their passions?

So the wrangling continues over whether things are generally good or generally bad for Ph.D. scientists, over whether the right basis for evaluating this is the life Ph.D. programs promise when they recruit students (which maybe they are only promising to the very best — or the very lucky) or the life most people (including large numbers of people who never finished college, or high school) can expect, over whether this is a problem that ought to be addressed or simply how things are.

* * *

The narratives here feel like they’re in conflict because they’re meant to do different things.

The individual-level narrative is intended to buoy the spirits of the student facing adversity, to find some glimmers of victory that can’t be taken away even by a grim employment market. It treats the background conditions as fixed, or at least as something the individual cannot change; what she can control is her reaction to them.

It’s pretty much the Iliad, but with lab coats.

The community-level narrative instead strives for a more accurate accounting of what all the individual trajectories add up to, focusing not on who has experienced personal growth but on who is employed. Here too, there is a striking assumption that The Way Things Are is a stable feature of the system, not something individual action could change — or that individual members of the community should feel any responsibility for changing.

And this is where I think there’s a need for another narrative, one with the potential to move us beyond the disagreement and disgruntlement we see each time the other two collide.

Professional communities, after all, are made up of individuals. People, not the economy, make hiring decisions. Members of professional communities make decisions about how they’re going to treat each other, and in particular about how they will treat the most vulnerable members of their community.

Graduate students are not receiving a mere service or commodity from their Ph.D. programs (“Would you like to supersize that scientific education?”). They are entering a relationship resembling an apprenticeship with the members of the professional community they’re trying to join. Arguably, this relationship means that the professional community has some responsibility for the ongoing well-being of those new Ph.D.s.

Here, I don’t think this is a responsibility to infantilize new Ph.D.s, to cover them with bubble-wrap or to create for them a sparkly artificial economy full of rainbows and unicorns. But they probably have a duty to provide help when they can.

Maybe this help would come in the form of showing compassion, rather than claiming that the people who deserve to be scientists will survive the rigors of the job market and that those who don’t weren’t meant to be in science. Maybe it would come by examining one’s own involvement in a system that defines success too narrowly, or that treats Ph.D. students as a consumable resource, or that fails to help those students cultivate a broad enough set of skills to ensure that they can find some gainful employment. Maybe it would come from professional communities finding ways to include as real members people they have trained but who have not been able to find employment in that profession.

Individuals make the communities. The aggregate of the decisions the communities make create the economic conditions and the quality of life issues. Treating current conditions — including current ways of recruiting students or describing the careers and lives they ought to expect at the other end of their training — as fixed for all time it a way of ignoring how individuals and institutions are responsible for those conditions. And, it doesn’t do anything to help change them.

It’s useful to have discussions of how to navigate the waters of The Way Things Are. It’s also useful to try to get accurate data about the topology of those waters. But these discussions shouldn’t distract us from serious discussions of The Way Things Could Be — and of how scientific communities can get there from here.