Why does Thanksgiving dinner make you sleepy?

Thanksgiving DessertsFor years, you’ve heard the tremendous fatigue experienced after an American Thanksgiving dinner laid at the feet of the turkey — or more precisely, blamed upon the tryptophan in that turkey. Trytophan, apparently, is the go-to amino acid for those who want to get sleepy.

Let me note, before we go on, that for all its association with tryptophan, turkey doesn’t even crack the top 50 in this list of tryptophan-rich foods. (Number one: stellar sea lion kidney.)

In any case, according to an article in the Los Angeles Times, that appeared in time for Thanksgiving 2008, the real story may be more complicated than that:

Continue reading

More on #Womanspace: common suggestions and patient responses.

A few things people have suggested in the discussion of “Womanspace” on multiple blogs and social networking platforms:

  1. That the story does not advance any gendered stereotypes (or, it it does, that these are not negative stereotypes, or that they reflect most poorly upon the hapless men in the story rather than upon the highly competent woman).
  2. That, if the story does rely on gendered stereotypes, these are surely not harmful to women because the author did not intend them to be harmful to women.
  3. That there is something untoward (or vicious, or slanderous) in pointing out that a story comes across to a number of readers (or just to oneself) as sexist — because, again, clearly that was not the intent of the author, and here you’ve gone and sullied his good name!
  4. That if one woman who reads a story does not find it sexist, no other women are within their rights to find it sexist. (A corollary to this is that those women who do find it sexist are actively looking for something to be angry about.)
  5. Peripherally, that a woman whose mode of dress is judged “provocative” will have her credibility to identify, or object to, gendered stereotypes questioned.
  6. That if there is any more pressing problem facing the planet or its denizens, someone will take you to task for “wasting time” pointing out gendered stereotypes and their potential negative effects
  7. That whether or not this particular attempt at humor in short fiction succeeded, the situation for women in scientific education, careers, and publishing is so much better than it used to be that there is no good reason for women to complain — verily, that they should show some appreciation for the golden age of gender equity in which we live.

It’s worth noting that many of these are familiar (so much so that there are bingo cards which collect them), and that many of us have tried patiently to respond to them many, many times (which may explain why we seem less-than-patient explaining the problem on the Nth time we hear these chestnuts, since N is by now a very large number). Indeed, one can’t help but wonder if the need to re-answer familiar objections over and over and over indicates a problem some have with listening to the answers.

But I’m sure that does not describe you, gentle reader. So, some responses:

  1. Here, let us turn to the source material:

    In any general shopping situation, men hunt: that is, they go into a complex environment with a few clear objectives, achieve those, and leave. Women, on the other hand, gather: such that any mission to buy just bread and milk could turn into an extended foraging expedition that also snares a to-die-for pair of discounted shoes; a useful new mop; three sorts of new cook-in sauces; and possibly a selection of frozen fish.

    And the interesting thing is — and this is what sparked the discovery — that any male would be very hard pressed to say where she got some of these things, even if he accompanied her.

    Is this not a generalization about gendered differences around shopping? Does it not play into stereotypes of women as shoppers — either always up for the next mall-crawl, or at least clearly in charge of spending the family’s money to procure necessary goods and services, including food, clothing, and cleaning supplies? Even if this is a stereotype that makes men, as a group, look less competent, that does not make it less of a stereotype. Sexist stereotypes hurt men, too.

  2. There is nothing magical about intent. If I accidentally step on your toe, it may hurt just as much as if I had intentionally stepped on it. Regardless of the intent of one’s actions, the effects of those actions may properly matter to the people affected by them. Pretending this is not so is magical thinking.
  3. Following upon #3, having the harmful effects of your actions pointed out to you and taking that as an attack on your character either reflects an inability to separate intent from effects, or an unwillingness to assume any responsibility for those effects (even if they were not intended), or an unwillingness to change in such a way as to avoid those effects in the future. The last of these options starts to look an awful lot like intent, or at least willful negligence — since if you’re listening, you have information that could help you avoid having the same harmful effects in the future.

    One might object that gendered stereotypes don’t actually have significant harmful effects — that at most they are annoying. Christie’s discussion of stereotype threat describes just one of the actual harms.

    If it makes you feel bad to have people point out the harmful effect of your action (even if that harmful effect is not intentional), think of how it must feel to actually experience the harmful effect that you feel bad having someone point out was caused by your action. If you feel bad being connected with sexist impacts, presumably it is because you recognize that sexist impacts are bad. Right?

    Here, the right thing to do is not to holler, “I didn’t mean it!” but rather to say, “I’m sorry I caused you harm; I’ll do my best to avoid doing it again.”

    For more assistance in distinguishing between the “what you did” and the “what you are”, see Jay Smooth.

  4. Women are not, as it turns out, a monolithic group. Among other things, this means some women will be more bothered by particular instances of sexism than others. This does not mean that the women who are bothered are wrong, or that they are not actually harmed. And, if you care about whether your piece of short fiction, or your workplace policy, or whatever, might have the specific effect of alienating women, you should probably take account of women who report actually being alienated rather than deciding that the existence of one woman who is not proves that no woman should be.

    Of course, if you don’t care whether your piece of short fiction, or your workplace policy, or whatever, might have the specific effect of alienating women, proceed accordingly.

  5. One sort of gendered stereotype that women have to deal with is the assumption that we choose our manner of dress to attract men — or, if we do not dress in a conventionally feminine manner, that we object to gendered stereotypes because we are unable to perform femininity (and thus cannot score the approval points available to those women who can). Let me suggest that the very fact that women’s appearance and “what it means” are taken to be relevant in evaluating substantive points those women may be trying to make is part of how women come to learn about sexism and its negative effects.
  6. “Surely being unfairly labeled a sexist is not nearly as bad a problem as children starving, so why are you wasting time complaining about this!” See how that works?

    More generally, caring about (and taking action to address) problem X does not necessitate not caring about (or not taking action to address) problem Y. People can tackle many problems simultaneously (and develop their own best strategies for successfully addressing all the injustices, even if they take them in a different order than you do).

  7. There is likely less overt sexism in scientific education, careers, and publishing than there one was. Research cited in a Nature news item suggests overt discrimination against women in scientific careers is “largely a thing of the past”. However, the same story notes that this research “contrasts with reports that suggest overt discrimination remains a significant problem”. And, the same study identified still-existing societal barriers to women’s success in science.

    Which is to say, things may be better for women in science than they once were, but women still have to grapple with gender-based impediments if they want to be scientists.

    If one thinks that success in science should not be subject to unfair impediments on the basis of gender, perhaps this means one has a responsibility not to introduce or reinforce such impediments, even unintentionally.

More generally, if you care about the situation for women in science, it may be useful to listen to women when they describe their experiences in science. These experiences may have given them some relevant insight.

In which I form the suspicion that I am not Nature’s intended audience.

Without the benefit of lots of time for reflection or analysis, my off-the-cuff reactions to Ed Rybicki’s piece “Womanspace” in the “Futures” section of Nature:

  1. It suggests (incorrectly) that I, as a middle-aged woman, might not be so interested in electronic gadgets or classic rock.
  2. And that I, as a woman, have some innate (or socially conditioned) “gatherer” approach to shopping, which I don’t; I’m more of the “hunter” Rybicki describes, which I suppose makes me masculine.
  3. As well, being a “hunter”-style shopper does not get me out of primary responsibility for acquiring clothes for my children. (Indeed, while I have been lectured by a teacher about how worn-out knees and art-related stains on my child’s clothes might erode that child’s self esteem, no teacher has ever taken up this issue with the male parent of that child. It’s clear whose job the teachers think it is to clothe the children properly.)
  4. Also, “a to-die-for pair of discounted shoes” is so far off my shopping radar as to be in some other universe within the multiverse. Again, does this mean I’m not a proper member of the category “women”?
  5. With regards to Rybicki’s question, “Have you never had the experience of talking to your significant female other as you wend your way through the complexity of a supermarket — only to suddenly find her 20 metres away with her back to you?”, my mind is drawn not to gendered differences (whether innate or learned) in movement through space-time but rather to differences (likely learned, likely variable within members of genders) in how people engage (or don’t) with those with whom they are trying to have a conversation.
  6. Even given my fairly low level of shopping-fu, I would never expect to find underwear (“knickers”) in a supermarket. Perhaps this is because I have been responsible for buying my own clothing (and food) for my whole adult life, which has given me at least a passing familiarity with what items are stocked in a supermarket and what items are stocked in a clothing store.
  7. If presenting as male in society would mean that someone else would take on responsibility for buying my clothing, I would seriously consider it. Even though I can’t grow facial hair worth a damn.
  8. Demonstrating incompetence once again is demonstrated to be an excellent strategy to avoid being asked to take on a task a second time — unless, of course, it is a task that is deemed a “natural” area of competence for members of your gender, in which case you’re pretty much out of luck weaseling out of it. (This is why I have to buy my own damn clothes.)
  9. Once again, I am frustrated that science fiction seems focused mainly on rethinking our technologies and the physical structure of our reality, rather than on imagining new social structures, relations, and expectations about human diversity.

Maybe all this shows is that Rybicki, in his piece, was not talking to me. If so, I hope that Nature is consciously adopting the strategy of being a “lad mag” (albeit a geeky one), else they are unwittingly alienating a good portion of their potential audience accidentally, which seems foolish.

* * * * *

For a bigger-picture response, read Christie.

Scientific authorship: guests, courtesy, contributions, and harms.

DrugMonkey asks, where’s the harm in adding a “courtesy author” (also known as a “guest author”) to the author line of a scientific paper?

I think this question has interesting ethical dimensions, but before we get into those, we need to say a little bit about what’s going on with authorship of scientific papers.

I suppose there are possible worlds in which who is responsible for what in a scientific paper might not matter. In the world we live in now, however, it’s useful to know who designed the experimental apparatus and got the reaction to work (so you can email that person your questions when you want to set up a similar system), who did the data analysis (so you can share your concerns about the methodology), who made the figures (so you can raise concerns about digital fudging of the images), etc. Part of the reason people put their names on scientific papers is so we know who stands behind the research — who is willing to stake their reputation on it.

The other reason people put their names on scientific papers is to claim credit for their hard work and their insights, their contribution to the larger project of scientific knowledge-building. If you made a contribution, the scientific community ought to know about it so they can give you props (and funding, and tenure, and the occasional Nobel Prize).

But, we aren’t in a possition to make accurate assignments of credit or responsibility if we have no good information about what an author’s actual involvement in the project may have been. We don’t know who’s really in a position to vouch for the data, or who really did heavy intellectual lifting in bringing the project to fruition. We may understand, literally, the claim, “Joe Schmoe is second author of this paper,” but we don’t know what that means, exactly.

I should note that there is not one universally recognized authorship standard for all of the Tribe of Science. Rather, different scientific disciplines (and subdisciplines) have different practices as far as what kind of contribution is recognized as worthy of inclusion as an author on a paper, and as far as what the order in which the authors are listed is supposed to communicate about the magnitude of each contribution. In some fields, authors are always listed alphabetically, no matter what they contributed. In others, being first in the list means you made the biggest contribution, followed by the second author (who made the second-biggest contribution), and so forth. It is usually the case that the principal investigator (PI) is identified as the “corresponding author” (i.e., the person to whom questions about the work should be directed), and often (but not always) the PI takes the last slot in the author line. Sometimes this is an acknowledgement that while the PI is the brains of the lab’s scientific empire, particular underlings made more immediately important intellectual contributions to the particular piece of research the paper is communicating. But authorship practices can be surprisingly local. Not only do different fields do it differently, but different research groups in the same field — at the same university — do it differently. What this means is it’s not obvious at all, from the fact that your name appears as one of the authors of a paper, what your contribution to the project was.

There have been attempts to nail down explicit standards for what kinds of contributions should count for authorship, with the ICMJE definition of authorship being one widely cited effort in this direction. Not everyone in the Tribe of Science, or even in the subset of the tribe that publishes in biomedical journals, thinks this definition draws the lines in the right places, but the fact that journal editors grapple with formulating such standards suggests at least the perception that scientists need a clear way to figure out who is responsible for the scientific work in the literature. We can have a discussion about how to make that clearer, but we have to acknowledge that at the present moment, just noting that someone is an author without some definition of what that entails doesn’t do the job.

Here’s where the issue of “guest authorship” comes up. A “guest author” is someone whose name appears in a scientific paper’s author line even though she has not made a contribution that is enough (under whatever set of standards one recognizes for proper authorship) to qualify her as an author of the paper.

A guest is someone who is visiting. She doesn’t really live here, but stays because of the courtesy and forebearance of the host. She eats your food, sleeps under your roof, uses your hot water, watches your TV — in short, she avails herself of the amenities the host provides. She doesn’t pay the rent or the water bill, though; that would transform her from a guest to a tenant.

To my way of thinking, a guest author is someone who is “just visiting” the project being written up. Rather than doing the heavy lifting in that project, she is availing herself of the amenities offered by association (in print) with that project, and doing so because of the courtesy and forebearance of the “host” author.

The people who are actually a part of the project will generally be able to recognize the guest author as a “guest” (as opposed to an actual participant). The people receiving the manuscript will not. In other words, the main amenity the guest author partakes in is credit for the labors of the actual participants. Even if all the participants agreed to this (and didn’t feel the least bit put out at the free-rider whose “authorship” might be diluting his or her own share of credit), this makes it impossible for those outside the group to determine what the guest author’s actual contribution was (or, in this case, was not). Indeed, if people outside the arrangement could tell that the guest author was a free-rider, there wouldn’t be any point in guest authorship.

Science strives to be a fact-based enterprise. Truthful communication is essential, and the ability to connect bits of knowledge to the people who contributed is part of how the community does quality control on that knowledge base. Ambiguity about who made the knowledge may lead to ambiguity about what we know. Also, developing too casual a relationship with the truth seems like a dangerous habit for a scientist to get into.

Coming back to DrugMonkey’s question about whether courtesy authorship is a problem, it looks to me like maybe we can draw a line between two kinds of “guests,” one that contributes nothing at all to the actual design, execution, evaluation, or communication of the research, and one who contributes something here, just less than what the conventions require for proper authorship. If these characters were listed as authors on a paper, I’d be inclined to call the first one a “guest author” and the second a “courtesy author” in an attempt to keep them straight; the cases with which DrugMonkey seems most concerned are the “courtesy authors” in my taxonomy. In actual usage, however, the two labels seem to be more or less interchangeable. Naturally, this makes it harder to distinguish who actually did what — but it strikes me that this is just the kind of ambiguity people are counting on when they include a “guest author” or “courtesy author” in the first place.

What’s the harm?

Consider a case where the PI of a research group insists on giving authorship of a paper to a postdoc who hasn’t gotten his experimental system to work at all and is almost out of funding. The PI gives the justification that “He needs some first-author papers or his time here will have been a total waste.” As it happens, giving this postdoc authorship bumps the graduate student who did all the experimental work (and the conceptual work, and data analysis, and drafting of the manuscript) out of first author slot — maybe even off the paper entirely.

There is real harm here, to multiple parties. In this case, someone got robbed of appropriate credit, and the person identified as most responsible for the published work will be a not-very-useful person to contact with deeper questions about the work (since he didn’t do any of it or at best participated on the periphery of the project).

Consider another kind of case, where authorship is given to a well-known scientist with a lot of credibility in his field, but who didn’t make a significant intellectual contribution to work (at least, not one that rises to the level of meriting authorship under the recognized standards). This is the kind of courtesy authorship that was extended to Gerald Schatten in a 2005 paper in Science another of whose authors was Hwang Woo Suk. This paper had 25 authors listed, with Schatten identified as the senior author. Ultimately, the paper was revealed to be fraudulent, at which point Schatten claimed mostly to have participated in writing the paper in good English — a contribution recognized as less than what one would expect from an author (especially the senior author).

Here, including Schatten as an author seemed calculated to give the appearance (to the journal editors while considering the manuscript, and to the larger scientific community consuming the published work)that the work was more important and/or credible, because of the big name associated with it. But this would only work because listing that big name in the author line amounts to claiming the big name was actually involved in the work. When the paper fell apart, Schatten swiftly disavowed responsibility — but such a disavowal was only necessary because of what was communicated by the author line, and I think it’s naïve to imagine that this “ambiguity” or “miscommunication” was accidental.

In cases like this, I think it’s fair to say courtesy authorship does harm, undermining the baseline of trust in the scientific community. It’s hard to engage in efficient knowledge-building with people you think are trying to put one over on you.

The cases where DrugMonkey suggests courtesy authorship might be innocuous strike me as interestingly different. They are cases where someone has actually made a real contribution of some sort to the work, but where that contribution may be judged (under whatever you take to be the accepted standards of your scientific discipline) as not quite rising to the level of authorship. Here, courtesy authorship could be viewed as inflating the value of the actual contribution (by listing the person who made it in the author line, rather than the acknowledgements), or alternatively as challenging where the accepted standards of your discipline draw the line between a contribution that qualifies you as an author and one that does not. For example, DrugMonkey writes:

First, the exclusion of those who “merely” collect data is stupid to me. I’m not going to go into the chapter and verse but in my lab, anyway, there is a LOT of ongoing trouble shooting and refining of the methods in any study. It is very rare that I would have a paper’s worth of data generated by my techs or trainees and that they would have zero intellectual contribution. Given this, the asymmetry in the BMJ position is unfair. In essence it permits a lab head to be an author using data which s/he did not collect and maybe could not collect but excludes the technician who didn’t happen to contribute to the drafting of the manuscript. That doesn’t make sense to me. The paper wouldn’t have happened without both of the contributions.

I agree with DrugMonkey that there’s often a serious intellectual contribution involved in conducting the experiments, not just in designing them (and that without the data, all we have are interesting hunches, not actual scientific knowledge, to report). Existing authorship standards like those from ICMJE or BMJ can unfairly exclude those who do the experimental labor from authorship by failing to recognize this as an intellectual contribution. Pushing to have these real contributions recognized with appropriate career credit is important. As well, being explicit about who made these contributions to the research being reported in the paper makes it much easier for other scientists following up on the published work (e.g., comparing it to their own results in related experiments, or trying to use some of the techniques described in the paper to set up new experiments) to actually get in touch with the people most likely to be able to answer their questions.

Changing how might weight experimental prowess is given in the career scorekeeping may be an uphill battle, especially when the folks distributing the rewards for the top scores are administrators (focused on the money the people they’re scoring can bring to an institution) and PIs (who frequently have more working hours devoted to conception and design of project for their underlings rather than to the intellectual labor of making those projects work, and to writing the proposals that bring in the grant money and the manuscripts that report the happy conclusion of the projects funded by such grants). That doesn’t mean it’s not a fight worth having.

But, I worry that using courtesy authorship as a way around this unfair setting of the authorship bar actually amounts to avoiding the fight rather than addressing these issues and changing accepted practices.

DrugMonkey also writes:

Assuming that we are not talking about pushing someone else meaningfully* out of deserved credit, where lies the harm even if it is a total gift?

Who is hurt? How are they damaged?
__
*by pushing them off the paper entirely or out of first-author or last-author position. Adding a 7th in the middle of the authorship list doesn’t affect jack squat folks.

Here, I wonder: if dropping in a courtesy author as the seventh author of a paper can’t hurt, how either can we expect it to help the person to whom this “courtesy” is extended?

Is it the case that no one actually expects that the seventh author made anything like a significant contribution, so no one is being misled in judging the guest in the number seven slot as having made a comparable contribution to the scientist who earned her seventh-author position in another paper? If listing your seventh-author paper on your CV is automatically viewed as not contributing any points in your career scorekeeping, why even list it? And why doesn’t it count for anything? Is it because the seventh author never makes a contribution worth career points … or is it because, for all we know, the seventh author may be a courtesy author, there for other reasons entirely?

If a seventh-author paper is actually meaningless for career credit, wouldn’t it be more help to the person to whom you might extend such a “courtesy” if you actually engaged her in the project in such a way that she could make an intellectual contribution recognized as worthy of career credit?

In other words, maybe the real problem with such courtesy authorship is that it gives the appearance of help without actually being helpful.

Methodology versus beliefs: What did Marcus Ross do wrong?

We’ve been discussing whether good science has more to do with the methodology you use or with what you believe, and considering the particular case of Ph.D. geoscientist and young earth creationist Marcus Ross (here and here). At least some of the responses to these two posts seem to offer the view that: (1) of course what makes for a reliable piece of scientific knowledge is the methodology used to produce it (and especially to check it for error), but (2) the very fact that Marcus Ross is committed to young earth creationism, which means among other things that he is committed to the belief that the earth is not more than 10,000 years old, is a fatal blow to his scientific credibility as a geoscientist.

Either this boils down to claiming that having young earth creationist beliefs makes it impossible to use scientific methodology and generate a reliable piece of knowledge (even though Ross seems to have done just that in writing his dissertation), or perhaps to claiming instead that a person who holds young earth creationist beliefs and also uses standard scientific methodology to generate bits of scientific knowledge must have some ulterior motive for generating them. In this latter case, I take it the worry is not with the respectability of the product (i.e., the scientific knowledge claims), nor of the process (i.e., the standard sorts of evidence or inferential machinery being used to support the scientific knowledge claims), but rather of the producer (i.e., the person going through all the scientific motions yet still believing in young earth creationism).

I think it’s worth examining the general unease and trying to be more precise about what people think Marcus Ross might be doing wrong here. However, let the record reflect that I have not been surveilling Marcus Ross — not sitting in on the classes he teaches, not tracking down and reading his scientific publications, not following him to geological meetings or church or the supermarket. What this means is that we’re going to be examining hypotheticals here, rather than scads of empirical facts about what Marcus Ross actually does.

Possibility 1: Ross is using his geoscience Ph.D. to gain unwarranted increase in credibility for young earth creationist beliefs.

Ross teaches geology at Liberty University. Part of this teaching seems to involve setting out the kinds of theories, evidence, and inferential machinery (including accepted dating methods and the evidential support for them) that you’d expect students to learn in a geology class in a secular university. Part of it also seems to involve laying out the details of young earth creationism (which is not accepted as scientific by the scientists who make up the field of geoscience), the claims it supports, and on what evidential basis. Obviously, the claims of young earth creationism are bolstered by quite different evidence and a quite distinct (religious) inferential structure.

One approach to this pedagogy would be to bring out the important differences, both in the conclusions of geology and of young earth creationism and in the recognized rules for drawing, testing, and supporting conclusions between the two. Indeed, Ross’s comments make it sound like this is the approach he takes:

In my classes here at Liberty University I introduce my students to the reasons why geologists think the Earth is ancient, or why various organisms are viewed as strong evidence for evolution.  I do this so that they understand that these arguments are well thought-out, and to teach them to respect the ideas of those with whom they disagree.

If Ross is actually making it clear how scientific inference differs from faith-based claims, then is should be clear to any of his students who are paying attention that the science Ross studied in graduate school does not support his young earth creationism. Rather, the science supports the scientific inference. His faith supports young earth creationism. The two are different.

If, on the other hand, Ross were to mischaracterize the theories, evidence, and inferential machinery of geoscience in his classes, that would be bad. It would amount to lying about the nature of geoscience (and perhaps also of science more broadly).

In the same way, if Ross were to claim that the body of geological knowledge, or the methods of geoscience, or the empirical evidence recognized by geoscientists lent scientific support to the claims of young earth creationism, that would also be lying.

Ross (and his students) might still accept young earth creationism, but they would be doing so on religious rather than scientific grounds — something that a careful study of geoscience and its methods should make clear. If anything, such a study should underline that the rules for the scientific credibility of a claim are orthogonal to the rules for the religious credibility of a claim.

Possibility 2: Ross doesn’t intend to use his geoscience Ph.D. to gain unwarranted increase in credibility for young earth creationist beliefs, but it has that effect on his audience anyway.

You might worry that Marcus Ross’s status as a Ph.D. geoscientist lends extra credibility to all the beliefs he voices — at least when those beliefs are judged by an audience of undergraduates who are enamored by Ph.D.s. That’s a hard degree to get, after all, and you have to be really smart to get one, right? And, smart people (especially those certified to be Ph.D.-smart by Ph.D. granting institutions) have more credible beliefs than everyone else, right?

If Ross’s students are making this sort of judgment about his credibility — and they might well be — it’s a silly judgment to make. It would be akin to assuming that my Ph.D. in chemistry would make me a more credible commentator on the theories of Descartes or Husserl. Let me assure you, it does not! (That’s why I spent six additional years of my life in graduate school developing the expertise relevant for work in philosophy.)

Indeed, the kind of extra credibility young earth creationism might gain in the minds of undergraduates by this route speaks more to a lack of critical thinking on the part of the undergraduates than it does to any dishonesty on Ross’s part. It also makes me yearn for the days of robust teen rebellion and reflexive mistrust of anyone over 30.

We should be fair, though, and recognize that it’s not just college students who can be dazzled by an advanced degree. Plenty of grown-ups in the larger society have the same reaction. Uncritically accepting the authority of the Ph.D. to speak on matters beyond the tether of his expertise is asking to be sold snake oil.

In light of the increased authority non-scientists seem to grant those with scientific training even outside the areas of their scientific expertise, it might be reasonable to ask scientists to be explicit about when they are speaking as scientists and when they are speaking as people with no special authority (or, perhaps, with authority that has some source other than scientific training). But, if we think Marcus Ross has an obligation to note that his scientific training does not support his views in the realm of young earth creationism, we probably ought to hold other scientists to the same obligation when they speak of matters beyond their scientific expertise. Fair is fair.

Possibility 3: Ross is using his engagement with the community of geoscientists to make it appear to outsiders as though his young earth creationist views are scientifically respectable, even though he knows they aren’t.

This is a possibility raised by Donald Prothero’s account of “stealth creationism” at meetings of the Geological Society of America (GSA). Prothero writes:

Most of the time when I attend the meetings, there are plenty of controversial topics and great debates going on within the geological community, so the profession does not suppress unorthodox opinions or play political games. This is the way it should be in any genuine scientific discipline. I’ve seen amazingly confrontational knock-down-drag-out sessions about particularly hotly debated ideas, but always conducted in a spirit of honest scientific exchange and always hewing to rules of science and naturalism. To get on the meeting program, scientists must propose to organize sessions around particular themes, along with field trips to geologically interesting sites within driving distance of the convention city, and the GSA host committee reads and approves these proposals. But every once in a while, I see a poster title and abstract with something suspicious about it. When I check the authors, they turn out to be Young-Earth Creationists (YEC) who claim the earth is only 6000 years old and all of geology can be explained by Noah’s flood. When I visit the poster session, it’s usually mobbed by real geologists giving the YECs a real grilling, even though the poster is ostensibly about some reasonable geologic topic, like polystrate trees in Yellowstone, and there is no overt mention of Noah’s flood in the poster. But the 2010 meeting last year in Denver took the cake: there was a whole field trip run by YECs who did not identify their agenda, and pretended that they were doing conventional geology—until you read between the lines.

Marcus Ross was one of the leaders of the field trip in question, as was Steve Austin of the Institute for Creation Research. Prothero quotes his colleague Steve Newton’s account of this GSA meeting field trip:

Through the entire trip, the leaders never identified themselves as YECs or openly advocated Noah’s flood or a 6000-year-old earth. Instead, the entire trip was filled with stops at outcrops where the leaders emphasized the possible evidence for sudden deposition of the strata at Garden of the Gods near Colorado Springs, without stating explicitly that they believed this sudden deposition was Noah’s flood in action. (There are LOTS of instances of local rapid and sudden deposition of strata in real geology, but they are local and clearly cannot be linked to any global flood). As Newton described it:

Furthermore, the field trip leaders were careful not to make overt creationist references. If the 50 or so field trip participants did not know the subtext and weren’t familiar with the field trip leaders, it’s quite possible that they never realized that the leaders endorsed geologic interpretations completely at odds with the scientific community. Even the GSA Sedimentary Geology Division had initially signed on as a sponsor of the trip (though they backed out once they learned the views of the trip leaders).

But the leaders’ Young-Earth Creationist views were apparent in rhetorical subtleties. For example, when Austin referred to Cambrian outcrops, he described them as rocks that are “called Cambrian.” It’s an odd phrasing, allowing use of the proper geologic term while subtly denying its implications. In one instance, when Austin was asked by a trip attendee about the age of a rock unit, he responded somewhat cryptically, “Wherever you want to go there.” Such phrasing was telling, if you knew what to listen for.

Subtext about the age of formations was a big part of the Young-Earth Creationist rhetoric on the trip. As we moved on to each field trip stop, a narrative began to emerge: the creationist concept of Noah’s Flood as explanation for the outcrops. Although no one uttered the words “Noachian Flood,” the guides’ descriptions of the geology were revealing and rather coy. For example, at the first stop—a trail off Highway 24 near Manitou Spring—Austin stated that the configuration of the units was “the same over North America,” and had been formed by a massive marine transgression. “Whatever submerged the continent,” Austin went on, it must have been huge in scale.

Here, a charitable reading of the field trip might be that the believers in geology were taking in the sights and interpreting the evidence with the (scientific) inferential machinery of geology, while the young earth creationists were taking in the very same sights and interpreting the evidence with the (religious) inferential machinery of young earth creationism. But, Prothero argues that there’s more than this going on:

Sadly, the real problem here is that YEC “geologists” come back from this meeting falsely bragging that their “research” was enthusiastically received, and that they “converted” a lot of people to their unscientific views. As Newton pointed out, they will crow in their publicity that they are attending regular professional meetings and presenting their research successfully. For those who don’t know any better, it sounds to the YEC audience like they are conventional geologists doing real research and that they deserve to be taken seriously as geologists—even though every aspect of their geology is patently false (see Chapter 3 in my 2007 Evolution book). And so, once more the dishonesty of the YEC takes advantage of the openness and freedom of the scientific community to exploit it to their own ends, and abuse the privilege of open communication to push anti-scientific nonsense on the general population that doesn’t know the difference.

Prothero notes (as does Marcus Ross in his comments on this blog) that the research by young earth creationists that is well received by the geological community is completely conventional, using only the inferential machinery of geoscience and making no use of the assumptions of young earth creationism. But presenting work (or leading a field trip) with a young earth creationist subtext (i.e., possibly these observations can be interpreted as evidence of a really big flood of some kind …) to an audience of geologists, and then spinning a lack of loud objections to a conclusion you didn’t explicitly present as if it were endorsement of that conclusion by the geologists is a dishonest move.

Honest engagement with a scientific community means putting your evidential and methodological cards on the table. It means, if you want to know whether other scientists would endorse (or even accept as not-totally-implausible) a particular conclusion, you put that particular conclusion out there for their examination. All you can reasonably conclude from the fact that other scientists didn’t shoot down a conclusion that you never openly stated is that those other scientists did not read your mind.

Possibility 4: It’s wrong for Ross to maintain his young earth creationist beliefs after the thorough exposure to scientific theories, evidence, and methodology that he received in his graduate training in geosciences.

Learning to be a scientist means, among other things, learning scientific patterns of thought, scientific standards for evaluating knowledge claims, and scientific methods for generating and testing new knowledge claims. Such immersion in the tribe of science and in the activity of scientific research, some might argue, should have driven the young earth creationist beliefs right out of Marcus Ross’s head.

Maybe we could reasonably expect this outcome if his young earth creationist beliefs depended on the same kind of evidence and inferential machinery as do scientific claims. However, they do not. Young earth creationist claims are not scientific claims, but faith-based claims. Young earth creationism sets itself apart from the inferential structure of science — if its adherents are persuaded that a claim is credible on the basis of faith (e.g., in a particular reading of scriptures), then no arrangement of empirical evidence could be sufficient to reliably undermine that adherence.

To be sure, this means that a scientist like Marcus Ross who is also a young earth creationist has non-scientific beliefs in his head. But, if we’re going to assert that scientific training ought, when done right, to purge the trainee of all non-scientific beliefs, then there is precious little evidence that scientific training is being done right anywhere.

There are quite a lot of scientists with non-scientific beliefs that persist. They have beliefs about who would be the best candidate to vote for in a presidential election, about what movie will be most entertaining, about what entree at the restaurant will be most delicious and nutritious. They have beliefs about whether the people they care for also care for them, and about whether their years of toil on particular research questions will make the world a better place (or, more modestly, whether they will have been personally fulfilling). Many of these beliefs are hunches, no better supported by the available empirical evidence than are the beliefs routinely formed by non-scientists.

This is not to say that the evidence necessarily argues against holding these beliefs. Rather, the available evidence may be so sparse as to be inadequate to support or undermine the belief. Still, scientific training does not prevent the person so trained from forming beliefs in these instances — and this may be useful, especially since there are situations where sitting on the fence waiting for decisive evidence is not the best call. (Surely we have more complete evidence about what kind of president Richard M. Nixon would make now than was available in November 1968, but it’s too late for us to use that evidence to vote in the 1968 presidential election.)

If harboring non-scientfic beliefs is a crime, we’d be hard pressed to find a single member of the tribe of science who is not at least a little guilty.

Maybe it’s more reasonable to hold scientists accountable to recognize which of their beliefs are well supported by empirical evidence and which are not. A bit of reflection is probably sufficient to help scientists sort out the scientific beliefs from the non-scientific beliefs. And, to the extent that Marcus Ross wants to be a practicing member of the tribe of science (or even an intellectually honest outsider with enough scientific training that he ought to be able to tell the difference), it’s just as reasonable to hold him accountable for recognizing which sort of beliefs constitute his young earth creationism.

Being able to tell the difference between scientific and non-scientific beliefs is not only a more attainable goal for human scientists than having only scientific beliefs, but it is a much easier standard for the tribe of science to police, since it involves examining what kinds of claims a person asserts as backed by the science — something other scientists can check by examining evidence and arguments — rather than examining what’s in a person’s head.

These possibilities strike me as the most likely candidates for what’s bugging science-minded people about Marcus Ross. If I’ve missed what’s bugging you about him, please make your case in the comments.

Methodology versus beliefs: a comment from Marcus Ross.

Last week, we considered whether good science has more to do with what you do or with what you believe, exploring this issue using the case of Marcus Ross, a Ph.D. geoscientist and young earth creationist. Dr. Ross sent me a response to this post via email. With his permission, I’m sharing that email here:

* * * * *
Hello Janet,
 
Thank you for your thoughtful piece yesterday in Scientific American.  It has been quite a while since the New York Times piece in 2007, so I was surprised to it revisited.  And I found your analysis of the events of my Ph.D. work far more considerate than many of the earlier reactions.  It’s nice not to be referred to as a trained parrot, a textbook case of cognitive dissonance, or a variety of unprintable words!
 
This paragraph from your piece sums things up quite nicely:

“It looks like Ross saw his dissertation as an exercise in presenting the inferences one could draw from the available data using the recognized methods of geoscience. In other words, here’s what we would conclude if all the assumptions about the age of the earth, deposition of fossils, isotope dating methods, etc., were true…”

 
This is a good sketch of what I did, not only for the Ph.D., but for all of my geological education (which was conducted entirely at non-creationist, state schools; and like at URI, at each location I made it known to my advisors that I was a young-Earth creationist).  I always felt that, since I was attempting to earn a degree from an institution which adhered to an ancient Earth and evolutionary explanations of life’s diversity, that I must show myself proficient in these areas. 
 
One clarification which stems from Cornelia Dean’s original article: I never referred to a “paleontological paradigm”.  That term is one she invented from her interview of me, but one I never introduced.  Indeed, the term actually makes very little sense (does anyone speak of a microbiology paradigm?).  In speaking with my students, I refer to the old-Earth and evolutionary paradigms, and I make sure to distinguish the two as well.
 
One issue that you bring up is whether I’ve essentially given up on interaction with the geological community, especially given my position at Liberty University.  Let me assure you that such is not the case.  In both print and in annual meetings, I do what I can to contribute to, and interact with, current geological discussions.  My publication record is not extensive, but it includes papers in a handful of conventional geological journals, including recent geological papers in 2009 and 2010 and co-leading a field trip at the annual meeting of the Geological Society of America (our largest professional association) last year with four other creation geologists.  Even Steven Newton of the NCSE has written, more or less, charitably of my, and my creationist colleagues’, continuing interactions at society meetings over the past few years.
 
Nevertheless, despite my best attempts, and because of some of my old-Earth and evolutionary colleagues’ attitudes towards me, the road of interaction has been bumpy.  I have had chapters of my (decidedly conventional) dissertation rejected from journals and special publications for no other reason than the fact that I am a creationist, sometimes in very explicit terms.  Presentations at society meetings are viewed with deep suspicion that I will make creationist arguments (or even preach!) once given the lectern.  I have, on two occasions, been “outed” as a creationist following my own presentation by scientists who wished to score points with their students and peers, and do damage to my reputation.  But having been open about being a creationist my whole career usually blunts such shoddy attempts at a “gotcha” moment.  The job description for my employment was gleefully mocked at a society presentation while I was in attendance.  And this is from the more legitimate forms of scientific dialogue.  Googling my name gets really ugly, really fast.
 
But such is no major deterrent to me, though it does impede my attempts to publish in conventional literature, for example.  I value the contributions of my colleagues, and have enjoyed many constructive interactions, despite the occasional run-in with less pleasant sorts.  In my classes here at Liberty University I introduce my students to the reasons why geologist think the Earth is ancient, or why various organisms are viewed as strong evidence for evolution.  I do this so that they understand that these arguments are well thought-out, and to teach them to respect the ideas of those with whom they disagree.  And I was grateful for your blog post because, unlike many others, you respect my position enough to treat it with courtesy.  Thank you.
 
Blessings,
Marcus
 
Marcus R. Ross, Ph.D.  

Associate Professor of Geology

Dept. of Biology and Chemistry
Liberty University

#scibloggers4students: DonorsChoose Board of Directors rewards your procrastination

… but only if you manage to actually make a donation before the end of the drive!

The DonorsChoose.org Board of Directors is excited about the success of the ongoing Science Bloggers for Students challenge. But, between now and the end of the drive Saturday, the Board of Directors thinks we can do more to connect public school classrooms with the resources they need to make education come alive. So, to encourage you to give — especially of you’ve been putting it off or letting someone else do it — the Board of Directors is matching all donations to Science Bloggers for Students placed between the first moment of Thursday October 20th and the last moment of Saturday, October 22nd (midnight to midnight, Eastern time).
 
Here’s how the match works:

  • At the end of the three day period, all dollars donated will be totaled, and the Board of Directors will match those dollars. If the donors put up $100, the Board of Directors puts up $100. If the donors put up $10,000, the Board of Directors puts up $10,000. For every dollar you give, you are soaking the DonorsChoose.org Board of Directors for a dollar! Maybe that kind of power to double your impact will help you find a few spare dollars to give.
  • The number of dollars given by the Board of Directors will be divided by the number of people who donated, and gift codes will be issued to every donor (via e-mail) for an equal share of the matching dollars. So, if 100 people donate a total of $10,000, each donor will receive a $100 DonorsChoose.org gift code.
  • Individuals will, in turn, have the chance to apply the funds to whatever classroom project they choose.

This is a great opportunity to spend someone else’s money to help kids learn about electricity, or to help a biology classroom get microscopes, or to fund a field trip to a science museum (all projects you can support through my giving page) — or to choose some other classroom project that is dear to your heart and that needs funding.
This is also a good time to show the world that Scientific American blog readers love science so much that they want to help public school classrooms get the materials and experiences in place so students can find their love of science, too. The Scientific American Blogs leaderboard could use your help creeping up the challenge motherboard. With the match now in place, donations in any amount, even $10, or $5, or $1, will make a difference.

(And remember, if you make a donation in any amount to my challenge giving page, you get to assign me a topic for a blog post. You know you want to …)

Is being a good scientist a matter of what you do or of what you feel in your heart?

If the question posed in the title of the post seems to you to have an obvious answer, sit tight while I offer a situation in which it might be less obvious.

We recently discussed philosopher Karl Popper’s efforts to find the line of demarcation between science and pseudo-science. In that discussion, one of the things you may have noticed is that Popper’s story is as much about a distinctive scientific attitude as it is about the details of scientific methodology. I wrote:

Popper has this picture of the scientific attitude that involves taking risks: making bold claims, then gathering all the evidence you can think of that might knock them down. If they stand up to your attempts to falsify them, the claims are still in play. But, you keep that hard-headed attitude and keep you eyes open for further evidence that could falsify the claims. If you decide not to watch for such evidence — deciding, in effect, that because the claim hasn’t been falsified in however many attempts you’ve made to falsify it, it must be true — you’ve crossed the line to pseudo-science.

And, my sense from scientists is that Popper’s description of their characteristic attitude is what they like best about his account. Hardly any scientist goes into the lab Monday morning with the firm intention of trying (yet again) to falsify the central hypotheses which she and the other scientists in her field have been using successfully (to predict and to explain and to create new phenomena) for years. Hardly any scientist will toss out hypotheses on the basis of a single experimental result that does not match the predictions of the hypotheses. But scientists agree that when they’re following the better angels of their scientific nature, their eyes are open to evidence that might conflict with even their most trusted hypotheses, and they are ready to kiss those hypotheses goodbye if the facts in the world line up against them.

An attitude is something that’s in your heart.

Certainly, an attitude may exert a strong influence on what you do, but if having the right attitude is something that matters to us over and above doing the right thing, we can ask why that is. My best hunch is that an attitude may act as a robust driver of behavior — in other words, having the right attitude may be a reliable mechanism that gets you to do the right thing, at least more than you might in the absence of that attitude.

So, what should we say about a scientist who appears to practice the methodology as he should, but who reveals himself as having something else in his heart?

This question came up back in 2007, when the New York Times reported on the curious case of Marcus R. Ross. Ross had written and defended an “impeccable” dissertation on the abundance and spread of marine reptiles called mosasaurs which (as his dissertation noted) vanished about 65 million years ago, earning a Ph.D. in geosciences from the University of Rhode Island. Then, he accepted a faculty position at Liberty University, where he is an Assistant Director of the Center for Creation Studies.

Ross is a young earth creationist, and as such believes that the earth is no older than 10,000 years. He was a young earth creationist when he wrote the impeccable dissertation in which he noted the disappearance of mosasaurs about 65 millions years ago. Indeed, he was a young earth creationist when he applied to the geosciences Ph.D. program at the University of Rhode Island, and did not conceal this information from the admissions committee.

Some details from the New York Times article:

For him, Dr. Ross said, the methods and theories of paleontology are one “paradigm” for studying the past, and Scripture is another. In the paleontological paradigm, he said, the dates in his dissertation are entirely appropriate. The fact that as a young earth creationist he has a different view just means, he said, “that I am separating the different paradigms.”

He likened his situation to that of a socialist studying economics in a department with a supply-side bent. “People hold all sorts of opinions different from the department in which they graduate,” he said. “What’s that to anybody else?” …

In theory, scientists look to nature for answers to questions about nature, and test those answers with experiment and observation. For Biblical literalists, Scripture is the final authority. As a creationist raised in an evangelical household and a paleontologist who said he was “just captivated” as a child by dinosaurs and fossils, Dr. Ross embodies conflicts between these two approaches. The conflicts arise often these days, particularly as people debate the teaching of evolution. …

In a telephone interview, Dr. Ross said his goal in studying at secular institutions “was to acquire the training that would make me a good paleontologist, regardless of which paradigm I was using.” …

He would not say whether he shared the view of some young earth creationists that flaws in paleontological dating techniques erroneously suggest that the fossils are far older than they really are.

Asked whether it was intellectually honest to write a dissertation so at odds with his religious views, he said: “I was working within a particular paradigm of earth history. I accepted that philosophy of science for the purpose of working with the people” at Rhode Island.

And though his dissertation repeatedly described events as occurring tens of millions of years ago, Dr. Ross added, “I did not imply or deny any endorsement of the dates.”

Ross pursued an education that gave him detailed knowledge of the theories the geoscience community uses, the questions geoscientists take to be interesting ones to pursue, the methods they use to make observations, to analyze data, and to draw inferences. He showed sufficient mastery of the “paleontological paradigm” that he was able to use it to build an additional piece of knowledge (the work contained in his dissertation) that was judged a contribution to his scientific community.

But, if he believed in his heart that the earth was thousands, not millions, of years old as he built this piece of knowledge, was he really a part of that scientific community? Was he essentially lying in his interactions with its members?

It looks like Ross saw his dissertation as an exercise in presenting the inferences one could draw from the available data using the recognized methods of geoscience. In other words, here’s what we would conclude if all the assumptions about the age of the earth, deposition of fossils, isotope dating methods, etc., were true. His caginess about the dates in the interview quoted above, and his professed belief in young earth creationism, suggest that Ross thinks at least some of these scientific assumptions are false.

However, assuming his rejection of the scientific assumptions flows primarily from his commitments as a young earth creationist, the rejection of the claims other geoscientists agree on is based in religious reasons, not scientific reasons. If there were scientific reasons to doubt these assumptions, it seems like examining those could only lead to a stronger body of knowledge in geosciences, and that Ross could have contributed to the field by making such an examination the focus of his doctoral research.

Is it an obligation for a scientist who has concerns about the goodness of an assumption on which people in his field rest their inferences to voice that concern? Is it an obligation for that scientist to gather data to test that hypothesis, or to work out an alternative hypothesis that is better supported by the data? Or is it OK to keep your doubts to your self and just use the inferential machinery everyone else is using?

Maybe people will answer this differently if the scientist in question is planning an ongoing engagement with the other members of this field, or if he is just passing through on the way to somewhere else. More on this in just a moment.

Here’s a shorter version of my question about the scientist’s obligations here: Does intellectual honesty in scientific knowledge-building just cover the way you use the inferential structure and the inputs (i.e., data) from which you draw your inferences? Or does it require disclosure of which assumptions you really accept (not just for the sake of argument, but in your heart of hearts) when drawing your inferences and which you are inclined to think are mistaken?

Does intellectual honesty require that you disclose as well the fact that you don’t actually accept the inferential structure of science as a good way to build knowledge?

Because ultimately, a commitment to young earth creationism seems to be a commitment that the data cannot properly be used to infer any claims that are at odds with scripture.

And here’s where scientists who might be willing to accept Ross’s dissertation as a legitimate chunk of scientific knowledge may have serious concerns with Ross as a credible member of the scientific community. The dissertation may stand (or fall) as a scientific argument that presents a particular array of data, describes accepted inferential strategies (perhaps even defending some such strategies that are themselves new contributions), and uses these strategies to draw conclusions form the data. Even if the person who assembled this argument was wracked with doubts about all the central premises of the argument, the argument itself could still function perfectly well in the ongoing scientific discourse, and other scientists in the community could judge that argument on its strengths and weaknesses — not on what might be in the heart of the person who constructed the argument.

But, if, ultimately, Marcus Ross rejects the “paleontological paradigm” — and the possibility that the data could properly support inferences at odds with scripture — can he function as a member of a community that makes, and evaluates, inferences using this paradigm?

Maybe he could, but his career trajectory makes it look like he has chosen not to be a member of the larger community of geoscientists. Instead, he has positioned himself as a member of a community of “creation scientists”. Whether Ross’s ongoing work on extinct marine reptiles is of any scientific interest to the scientific field that trained him will probably depend on the methodology and inferential structure on display in his manuscripts.

Because methodology and inferential structure are much easier to evaluate in the peer review process than what is in the author’s heart.

* * * * *

If you enjoyed this post, consider contributing a few bucks to a project in my Giving Page in the Science Bloggers for Students 2011 challenge. Supporting science education in public school classrooms will help young people get a better handle on what kind of attitude and methodology makes science science — and on all the cool things science can show us about our world.

DonorsChoose #scibloggers4students: donate and set my blogging agenda.

You already know that the science-inclined precincts of the blogosphere are in the midst of Science Bloggers for Students 2011, in which we and DonorsChoose ask you to contribute funds to public school classroom projects which provide books, science kits, safety equipment and reagents, field trips, and other essentials to make learning come alive for students.

You may also recall that the drive this year runs through October 22nd. And, seeing as how that’s more than a week away, you maybe have making a donation on the second (or third) page of your to-do list. Or, you figure someone else will do it.

A bunch of other folks (including me!) have donated funds to get the challenge rolling — the overall total for the drive as I compose this is $13,768 — but there are so many more classroom projects waiting to be funded. Inertia may be a comfortable default, especially in the face of need so great that its enormity is paralyzing, but if you can spare a few bucks you will be doing something tangible to be a force for good.

And, it’s easy. Visit my giving page, check out the projects described there, enter the amount of money you want to give, and check out. It’s as quick and painless as buying a book or a T-shirt online.

Plus, I’m prepared to make it worth your while.

Set my blogging agenda!

“Doing Good Science” is a relatively new blog on a relatively new blog network. In my first post here, I said a little about the sorts of topics I plan to take up on the blog, but if you’re willing to step up to help DonorsChoose, I’m willing to give you more control of what I blog about — at least for the length of a post.

Until the end of the drive (October 22nd), if you make a donation of any size to my giving page, you get to assign me a blog post topic.

Is there a particular misconduct scandal you want me to examine? A matter of scientific methodology you want me to explore? An issue where the tribe of science and the larger public see the ethical landscape differently that you want me to write about? Make a donation, forward me a copy of the email DonorsChoose sends you to confirm your donation to my giving page, tell me what you want me to write about, and I’ll make it happen.

OK, you know the facts. You know what to do.

DonorsChoose #scibloggers4students: now occupying your social media.

A video communiqué from Science Bloggers for Students 2011:

#scibloggers4students occupy your social media

The drive runs through October 22, and a number of Scientific American blogs (Anthropology in Practice, The Artful Amoeba, Doing Good Science, EvoEcoLab, PsiVid, Science Sushi, The Thoughtful Animal, and The Urban Scientist … so far) are participating.

Here’s the Scientific American leaderboard.

Here’s my giving page.

If you can spare a few bucks, you can help bring school kids the books, equipment, field trips, or other goodies that will make their science education come alive.