Are you saying I can’t go home until we cure cancer? Obligations of scientists (part 7)

In the previous post in this series, we examined the question of what scientists who are trained with significant financial support from the public (which, in the U.S., means practically every scientist trained at the Ph.D. level) owe to the public providing that support. The focus there was personal: I was trained to be a physical chemist, free of charge due to the public’s investment, but I stopped making new scientific knowledge in 1994, shortly after my Ph.D. was conferred.

From a certain perspective, that makes me a deadbeat, a person who has fallen down on her obligations to society.

Maybe that perspective strikes you as perverse, but there are working scientists who seem to share it.

Consider this essay by cancer researcher Scott E. Kern raising the question of whether cancer researchers at Johns Hopkins who don’t come into the lab on a Sunday afternoon have lost sight of their obligations to people with cancer.

Kern wonders if scientists who manage to fit their laboratory research into the confines of a Monday-through-Friday work week might lack a real passion for scientific research. He muses that full weekend utilization of their modern cancer research facility might waste less money (in terms of facilities and overhead, salaries and benefits). He suggests that the researchers who have are not hard at work in the lab on a weekend are falling down on their moral duty to cure cancer as soon as humanly possible.

The unsupported assumptions in Kern’s piece are numerous (and far from novel). Do we know that having each research scientist devote more hours in the lab increases the rate of scientific returns? Or might there plausibly be a point of diminishing returns, where additional lab-hours produce no appreciable return? Where’s the economic calculation to consider the potential damage to the scientists from putting in 80 hours a week (to their cognitive powers, their health, their personal relationships, their experience of a life outside of work, maybe even their enthusiasm for science)? After all, lots of resources are invested in educating and training researchers — enough so that one wouldn’t want to damage those researchers on the basis of an (unsupported) hypothesis offered in the pages of Cancer Biology & Therapy.

And while Kern is doing economic calculations, he might want to consider the impact on facilities of research activity proceeding full-tilt, 24/7. Without some downtime, equipment and facilities might wear out faster than they would otherwise.

Nowhere here does Kern consider the option of hiring more researchers to work 40 hour weeks, instead of persuading the existing research workforce into spending 60, 80, 100 hours a week in the lab.

These researchers might still end up bringing work home (if they ever get a chance to go home).

Kern might dismiss this suggestion on purely economic grounds — organizations are more likely to want to pay for fewer employees (with benefits) who can work more hours than to pay to have the same number of hours of work done my more employees. He might also dismiss it on the basis that the people who really have the passion needed to do the research to cure cancer will not prioritize anything else in their lives above doing that research and finding that cure.

But one assumes passion of the sort Kern seems to have in mind would be the kind of thing that would drive researchers to the lab no matter what, even in the face of long hours, poor pay, grinding fatigue. If that is so, it’s not clear how the problem is solved by browbeating researchers without this passion into working more hours because they owe it to cancer patients. Indeed, Kern might consider, in light of the relative dearth of researchers with passion sufficient to fill the cancer research facilities on weekends, the necessity of making use of the research talents and efforts of people who don’t want to spend 60 hours a week in the lab. Kern’s piece suggests he’d have a preference for keeping such people out of the research ranks (despite the significant societal investment made in their scientific training), but by his own account there would hardly be enough researchers left in that case to keep research moving forward.

Might not these conditions prompt us to reconsider whether the received wisdom of scientific mentors is always so wise? Wouldn’t this be a reasonable place to reevaluate the strategy for accomplishing the grand scientific goal?

And Kern does not even consider a pertinent competing hypothesis, that people often have important insights into how to move research forward in the moments when they step back and allow their minds to wander. Perhaps less time away from one’s project means fewer of these insights — which, on its face, would be bad for the project of curing cancer.

The strong claim at the center of Kern’s essay is an ethical claim about what researchers owe cancer patients, about what cancer patients can demand from researchers (or any other members of society), and on what basis.

He writes:

During the survey period, off-site laypersons offer comments on my observations. “Don’t the people with families have a right to a career in cancer research also?” I choose not to answer. How would I? Do the patients have a duty to provide this “right”, perhaps by entering suspended animation? Should I note that examining other measures of passion, such as breadth of reading and fund of knowledge, may raise the same concern and that “time” is likely only a surrogate measure? Should I note that productive scientists with adorable family lives may have “earned” their positions rather than acquiring them as a “right”? Which of the other professions can adopt a country-club mentality, restricting their activities largely to a 35–40 hour week? Don’t people with families have a right to be police? Lawyers? Astronauts? Entrepreneurs?

Kern’s formulation of this interaction of rights and duties strikes me as odd. Essentially, he’s framing this as a question of whether people with families have a right to a career in cancer research, rather than whether cancer researchers have a right to have families (or any other parts of their lives that exist beyond their careers). Certainly, there have been those who have treated scientific careers as vocations requiring many sacrifices, who have acted as if there is a forced choice between having a scientific career and having a family (unless one has a wife to tend to that family).

We should acknowledge, however, that having a family life is just one way to “have a life.” Therefore, let’s consider the question this way: Do cancer researchers have a right to a life outside of work?

Kern’s suggestion is that this “right,” when exercised by researchers, is something that cancer patients end up paying for with their lives (unless they go into suspended animation while cancer researchers are spending time with their families or puttering around their gardens).

The big question, then, is what the researcher’s obligations are to the cancer patient — or to society in general.

If we’re to answer that question, I don’t think it’s fair to ignore the related questions: What are society’s obligations to the cancer patient? What are society’s obligations to researchers? And what are the cancer patient’s obligations in all of this?

We’ve already spent some time discussing scientists’ putative obligation to repay society’s investment in their training:

  • society has paid for the training the scientists have received (through federal funding of research projects, training programs, etc.)
  • society has pressing needs that can best (only?) be addressed if scientific research is conducted
  • those few members of society who have specialized skills that are needed to address particular societal needs have a duty to use those skills to address those needs (i.e., if you can do research and most other people can’t, then to the extent that society as a whole needs the research that you can do, you ought to do it)

Arguably, finding cures and treatments for cancer would be among those societal needs.

Once again the Spider-Man ethos rears its head: with great power comes great responsibility, and scientific researchers have great power. If cancer researchers won’t help find cures and treatments for cancer, who else can?

Here, I think we should pause to note that there is probably an ethically relevant difference between offering help and doing everything you possibly can. It’s one thing to donate a hundred bucks to charity and quite another to give all your money and sell all your worldly goods in order to donate the proceeds. It’s a different thing for a healthy person to donate one kidney than to donate both kidneys plus the heart and lungs.

In other words, there is help you can provide, but there seems also to be a level of help that it would be wrong for anyone else to demand of you. Possibly there is also a level of help that it would be wrong for you to provide even if you were willing to do so because it harms you in a fundamental and/or irreparable way.

And once we recognize that such a line exists between the maximum theoretical help you could provide and the help you are obligated to provide, I think we have to recognize that the needs of cancer patients do not — and should not — trump every other interest of other individuals or of society as a whole. If a cancer patient cannot lay claim to the heart and lungs of a cancer researcher, then neither can that cancer patient lay claim to every moment of a cancer researcher’s time.

Indeed, in this argument of duties that spring from ability, it seems fair to ask why it is not the responsibility of everyone who might get cancer to train as a cancer researcher and contribute to the search for a cure. Why should tuning out in high school science classes, or deciding to pursue a degree in engineering or business or literature, excuse one from responsibility here? (And imagine how hard it’s going to be to get kids to study for their AP Chemistry or AP Biology classes when word gets out that their success is setting them up for a career where they ought never to take a day off, go to the beach, or cultivate friendships outside the workplace. Nerds can connect the dots.)

Surely anyone willing to argue that cancer researchers owe it to cancer patients to work the kind of hours Kern seems to think would be appropriate ought to be asking what cancer patients — and the precancerous — owe here.

Does Kern think researchers owe all their waking hours to the task because there are so few of them who can do this research? Reports from job seekers over the past several years suggest that there are plenty of other trained scientists who could do this research but have not been able to secure employment as cancer researchers. Some may be employed in other research fields. Others, despite their best efforts, may not have secured research positions at all. What are their obligations here? Ought those employed in other research areas to abandon their current research to work on cancer, departments and funders be damned? Ought those who are not employed in a research field to be conducting their own cancer research anyway, without benefit of institution or facilities, research funding or remuneration?

Why would we feel scientific research skills, in particular, should make the individuals who have them so subject to the needs of others, even to the exclusion of their own needs?

Verily, if scientific researchers and the special skills they have are so very vital to providing for the needs of other members of society — vital enough that people like Kern feel it’s appropriate to criticize them for wanting any time out of the lab — doesn’t society owe it to its members to give researchers every resource they need for the task? Maybe even to create conditions in which everyone with the talent and skills to solve the scientific problems society wants solved can apply those skills and talents — and live a reasonably satisfying life while doing so?

My hunch is that most cancer patients would actually be less likely than Kern to regard cancer researchers as of merely instrumental value. I’m inclined to think that someone fighting a potentially life-threatening disease would be reluctant to deny someone else the opportunity to spend time with loved ones or to savor an experience that makes life worth living. To the extent that cancer researchers do sacrifice some aspects of the rest of their life to make progress on their work, I reckon most cancer patients appreciate these sacrifices. If more is needed for cancer patients, it seems reasonable to place this burden on society as a whole — teeming with potential cancer patients and their relatives and friends — to enable more (and more effective) cancer research to go on without drastically restricting the lives of the people qualified to conduct it, or writing off their interests in their own human flourishing.

As a group, scientists do have special capabilities with which they could help society address pressing problems. To the extent that they can help society address those problems, scientists probably should — not least because scientists are themselves part of society. But despite their special powers, scientists are still human beings with needs, desires, interests, and aspirations. A society that asks scientists to direct their skills and efforts towards solving its problems also has a duty to give scientists the same opportunities to flourish that it provides for its members who happen not to be scientists.

In the next post in this series, I’ll propose a less economic way to think about just what society might be buying when it invests in the training of scientists. My hope is that this will give us a richer and more useful picture of the obligations scientists and non-scientists have to each other as they are sharing a world.

* * * * *
Ancestors of this post first appeared on Adventures in Ethics and Science
_____

Kern, S. E. (2010). Where’s the passion?. Cancer biology & therapy, 10(7),655-657.
_____
Posts in this series:

Questions for the non-scientists in the audience.

Questions for the scientists in the audience.

What do we owe you, and who’s “we” anyway? Obligations of scientists (part 1)

Scientists’ powers and ways they shouldn’t use them: Obligations of scientists (part 2)

Don’t be evil: Obligations of scientists (part 3)

How plagiarism hurts knowledge-building: Obligations of scientists (part 4)

What scientists ought to do for non-scientists, and why: Obligations of scientists (part 5)

What do I owe society for my scientific training? Obligations of scientists (part 6)

Are you saying I can’t go home until we cure cancer? Obligations of scientists (part 7)

What do I owe society for my scientific training? Obligations of scientists (part 6)

One of the dangers of thinking hard about your obligations is that you may discover one that you’ve fallen down on. As we continue our discussion of the obligations of scientist, I put myself under the microscope and invite you to consider whether I’ve incurred a debt to society that I have failed to pay back.

In the last post in this series, we discussed the claim that those in our society with scientific training have a positive duty to conduct scientific research in order to build new scientific knowledge. The source of that putative duty is two-fold. On the one hand, it’s a duty that flows from the scientist’s abilities in the face of societal needs: if people trained to build new scientific knowledge won’t build the new scientific knowledge needed to address pressing problems (like how to feed the world, or hold off climate change, or keep us all from dying from infectious diseases, or what have you), we’re in trouble. On the other hand, it’s a duty that flows from the societal investment that nurtures the development of these special scientific abilities: in the U.S., it’s essentially impossible to get scientific training at the Ph.D. level that isn’t subsidized by public funding. Public funding is used to support the training of scientists because the public expects a return on that investment in the form of grown-up scientists building knowledge which will benefit the public in some way. By this logic, people who take advantage of that heavily subsidized scientific training but don’t go on to build scientific knowledge when they are fully trained are falling down on their obligation to society.

People like me.

From September 1989 through December 1993, I was in a Ph.D. program in chemistry. (My Ph.D. was conferred January 1994.)

As part of this program, I was enrolled in graduate coursework (two chemistry courses per quarter for my first year, plus another chemistry course and three math courses, for fun, during my second year). I didn’t pay a dime for any of this coursework (beyond buying textbooks and binder paper and writing implements). Instead, tuition was fully covered by my graduate tuition stipend (which also covered “units” in research, teaching, and department seminar that weren’t really classes but appeared on our transcripts as if they were). Indeed, beyond the tuition reimbursement I was paid a monthly stipend of $1000, which seemed like a lot of money at the time (despite the fact that more than a third of it went right to rent).

I was also immersed in a research lab from January 1990 onward. Working in this lab was the heart of my training as a chemist. I was given a project to start with — a set of empirical questions to try to answer about a far-from-equilibrium chemical system that one of the recently-graduated students before me had been studying. I had to digest a significant chunk of experimental and theoretical literature to grasp why the questions mattered and what the experimental challenges in answering them might be. I had to assess the performance of the experimental equipment we had on hand, spend hours with calibrations, read a bunch of technical manuals, disassemble and reassemble pumps, write code to drive the apparatus and to collect data, identify experimental constraints that were important to control (and that, strangely, were not identified as such in the experimental papers I was working from), and also, when I determined that the chemical system I had started with was much too fussy to study with the equipment the lab could afford, to identify a different chemical system that I could use to answer similar questions and persuade my advisor to approve this new plan.

In short, my time in the lab had me learning how to build new knowledge (in a particular corner of physical chemistry) by actually building new knowledge. The earliest stages of my training had me juggling the immersion into research with my own coursework and with teaching undergraduate chemistry students as a lab instructor and teaching assistant. Some weeks, this meant I was learning less about how to make new scientific knowledge than I was about how to tackle a my problem-sets or how to explain buffers to pre-meds. Past the first year of the program, though, my waking hours were dominated by getting experiments designed, collecting loads of data, and figuring out what it meant. There were significant stretches of time during which I got into the lab by 5 AM and didn’t leave until 8 or 9 PM, and the weekend days when I didn’t go into the lab were usually consumed with coding, catching up on relevant literature, or drafting manuscripts or thesis chapters.

Once, for fun, some of us grad students did a back-of-the-envelope calculation of our hourly wages. It was remarkably close to the minimum wage I had been paid as a high school student in 1985. Still, we were getting world class scientific training, for free! We paid with the sweat of our brows, but wouldn’t we have to put in that time and effort to learn how to make scientific knowledge anyway? Sure, we graduate students did the lion’s share of the hands-on teaching of undergraduates in our chemistry department (undergraduates who were paying a significant tuition bill), but we were learning, from some of the best scientists in the world, how to be scientists!

Having gotten what amounts to a full-ride for that graduate training, due in significant part to public investment in scientific training at the Ph.D. level, shouldn’t I be hunkered down somewhere working to build more chemical knowledge to pay off my debt to society?

Do I have any good defense to offer for the fact that I’m not building chemical knowledge?

For the record, when I embarked on Ph.D. training in chemistry, I fully expected to be an academic chemist when I grew up. I really did imagine that I’d have a long career building chemical knowledge, training new chemists, and teaching chemistry to an audience that included some future scientists and some students who would go on to do other things but who might benefit from a better understanding of chemistry. Indeed, when I was applying to graduate programs, my chemistry professors were talking up the “critical shortage” of Ph.D. chemists. (By January of my first year in graduate school, I was reading reports that there were actually something like 30% more Ph.D. chemists than there were jobs for Ph.D. chemists, but a first-year grad student is not necessarily freaking out about the job market while she is wrestling with her experimental system.) I did not embark on a chemistry Ph.D. as a collectable. I did not set out to be a dilettante.

In the course of the research that was part of my Ph.D. training, I actually built some new knowledge and shared it with the public, at least to the extent of publishing it in journal articles (four of them, an average of one per year). It’s not clear what the balance sheet would say about this rate of return on the public’s investment in my scientific training — nor either whether most taxpayers would judge the knowledge I built (about the dynamics of far-from-equilibrium chemical reactions and about ways to devise useful empirical tests of proposed reaction mechanisms) as useful knowledge.

Then again, no part of how our research was evaluated in grad school was framed in terms of societal utility. You might try to describe how your research had broader implications that someone outside your immediate subfield could appreciate if you were writing a grant to get the research funded, but solving society’s pressing scientific problems was not the sine qua non of the research agendas we were advancing for our advisors or developing for ourselves.

As my training was teaching me how to conduct serious research in physical chemistry, it was also helping me to discover that my temperament was maybe not so well suited to life as a researcher in physical chemistry. I found, as I was struggling with a grant application that asked me to describe the research agenda I expected to pursue as an academic chemist, that the questions that kept me up at night were not fundamentally questions about chemistry. I learned that no part of me was terribly interested in the amount of grant-writing and lab administration that would have been required of me as a principal investigator. Looking at the few women training me at the Ph.D. level, I surmised that I might have to delay or skip having kids altogether to survive academic chemistry — and that the competition for those faculty jobs where I’d be able to do research and build new knowledge was quite fierce.

Plausibly, had I been serious about living up to my obligation to build new knowledge by conducting research, I could have been a chemist in industry. As I was finishing up my Ph.D., the competition for industry jobs for physical chemists like me was also pretty intense. What I gathered as I researched and applied for industry jobs was that I didn’t really like the culture of industry. And, while working in industry would have been a way from me to conduct research and build new knowledge, I might have ended up spending more time solving the shareholders’ problems than solving society’s problems.

If I wasn’t going to do chemical research in an academic career and I wasn’t going to do chemical research in an industrial job, how should I pay society back for the publicly-supported scientific training I received? Should I be building new scientific knowledge on my own time, in my own garage, until I’ve built enough that the debt is settled? How much new knowledge would that take?

The fact is, none of us Ph.D. students seemed to know at the time that public money was making it possible for us to get graduate training in chemistry without paying for that training. Nor was there an explicit contract we were asked to sign as we took advantage of this public support, agreeing to work for a certain number of years upon the completion of our degrees as chemists serving the public’s interests. Rather, I think most of us saw an opportunity to pursue a subject we loved and to get the preparation we would need to become principal investigators in academia or industry if we decided to pursue those career paths. Most of us probably didn’t know enough about what those career paths would be like to have told you at the beginning of our Ph.D. training whether those career paths would suit our talents or temperaments — that was part of what we were trying to find out by pursuing graduate studies. And practically, many of us would not have been able to find out if we had had to pay the costs of our Ph.D. training ourselves.

If no one who received scientific training subsidized by the public went on to build new scientific knowledge, this would surely be a problem for society. But, do we want to say that everyone who receives such subsidized training is on the hook to pay society back by building new scientific knowledge until such time as society has all the scientific knowledge it needs?

That strikes me as too strong. However, given that I’ve benefitted directly from a societal investment in Ph.D. training that, for all practical purposes, I stopped using in 1994, I’m probably not in a good position to make an objective judgment about just what I do owe society to pay back this debt. Have I paid it back already? Is society within its rights to ask more of me?

Here, I’ve thought about the scientist’s debt to society — my debt to society — in very personal terms. In the next post in the series, we’ll revisit these questions on a slightly larger scale, looking at populations of scientists interacting with the larger society and seeing what this does to our understanding of the obligations of scientists.
______
Posts in this series:

Questions for the non-scientists in the audience.

Questions for the scientists in the audience.

What do we owe you, and who’s “we” anyway? Obligations of scientists (part 1)

Scientists’ powers and ways they shouldn’t use them: Obligations of scientists (part 2)

Don’t be evil: Obligations of scientists (part 3)

How plagiarism hurts knowledge-building: Obligations of scientists (part 4)

What scientists ought to do for non-scientists, and why: Obligations of scientists (part 5)

What do I owe society for my scientific training? Obligations of scientists (part 6)

Are you saying I can’t go home until we cure cancer? Obligations of scientists (part 7)

On speaking up when someone in your profession behaves unethically.

On Twitter recently there was some discussion of a journalist who wrote and published a piece that arguably did serious harm to its subject.

As the conversation unfolded, Kelly Hills helpfully dropped a link to the Society of Professional Journalists Code of Ethics. Even cursory inspection of this code made it quite clear that the journalist (and editor, and publisher) involved in the harmful story weren’t just making decisions that happened to turn out badly. Rather, they were acting in ways that violate the ethical standards for the journalistic profession articulated in this code.

One take-away lesson from this is that being aware of these ethical standards and letting them guide one’s work as a journalist could head off a great deal of harm.

Something else that came up in the discussion, though, was what seemed like a relative dearth of journalists standing up to challenge the unethical conduct of the journalist (and editor, and publisher) in question. Edited to add: A significant number of journalists even used social media to give the problematic piece accolades.

I follow a lot of journalists on Twitter. A handful of them condemned the unethical behavior in this case. The rest may be busy with things offline. It is worth noting that the Society of Professional Journalists Code of Ethics includes the following:

Journalists should:

  • Clarify and explain news coverage and invite dialogue with the public over journalistic conduct.
  • Encourage the public to voice grievances against the news media.
  • Admit mistakes and correct them promptly.
  • Expose unethical practices of journalists and the news media.
  • Abide by the same high standards to which they hold others.

That fourth bullet-point doesn’t quite say that journalists ought to call out bad journalistic behavior that has already been exposed by others. However, using one’s voice to condemn unethical conduct when you see it is one of the ways that people know that you’re committed to ethical conduct. (The other way people know you’re committed to ethical conduct is that you conduct yourself ethically.)

In a world where the larger public is probably going to take your professional tribe as a package deal, extending trust to the lot of you or feeling mistrust for the lot of you, reliably speaking up about problematic conduct when you see it is vital in earning the public’s trust. Moreover, criticisms from inside the professional community seem much more likely to be effective in persuading its members to embrace ethical conduct than criticisms from outside the profession. It’s just too easy for people on the inside to dismiss the critique from people on the outside with, “They just don’t understand what we do.”

There’s a connection here between what’s good for the professional community of journalists and what’s good for the professional community of scientists.

When scientists behave unethically, other scientists need to call them out — not just because the unethical behavior harms the integrity of the scientific record or the opportunities of particular members of the scientific community to flourish, or the health or safety of patients, but because this is how members of the community teetering on the brink of questionable decisions remember that the community does not tolerate such behavior. This is how they remember that those codes of conduct are not just empty words. This is how they remember that their professional peers expect them to act with integrity very single day.

If members of a professional community are not willing to demand ethical behavior from each other in this way, how can the public be expected to trust that professional community to behave ethically?

Undoubtedly, there are situations that can make it harder to take a stand against unethical behavior in your professional community, power disparities that can make calling out the bad behavior dangerous to your own standing in the professional community. As well, shared membership in a professional community creates a situation where you’re inclined to give your fellow professional the benefit of the doubt rather than starting from a place of distrust in your engagements.

But if only a handful of voices in your professional community are raised to call out problematic behavior that the public has identified and is taking very seriously, what does that communicate to the public?

Maybe that you see the behavior, don’t think it’s problematic, but can’t be bothered to explain why it’s not problematic (because the public’s concerns just don’t matter to you).

Maybe that you see the behavior, recognize that it’s problematic, but don’t actually care that much when it happens (and if the public is concerned about it, that’s their problem, not yours).

Maybe that you’re working very hard not to see the problematic behavior (which, in this case, probably means you’re also working very hard not to hear the public voicing its concerns).

Sure, there’s a possibility that you’re working very hard within your professional community to address the problematic behavior and make sure it doesn’t happen again, but if the public doesn’t see evidence of these efforts, it’s unreasonable to expect them to know they’re happening.

It’s hard for me to see how the public’s trust in a profession is supposed to be strengthened by people in the professional community not speaking out against unethical conduct of members of that professional community that the public already knows about. Indeed, I think a profession that only calls out bed behavior in its ranks that the public already knows about is skating on pretty thin ice.

It surely feels desperately unfair to all the members of a professional community working hard to conduct themselves ethically when the public judges the whole profession on the basis of the bad behavior of a handful of its members. One may be tempted to protest, “We’re not all like that!” That’s not really addressing the public’s complaint, though: The public sees at least one of you who’s “like that”; what are the rest of you doing about that?

If the public has good reason to believe that members of the profession will be swift and effective in their policing of bad behavior within their own ranks, the public is more likely to see the bad actors as outliers.

But the public is more likely to believe that members of the profession will be swift and effective in their policing of bad behavior within their own ranks when they see that happen, regularly.

Nature and trust.

Here are some things that I know:

Nature is a high-impact scientific journal that is widely read in the scientific community.

The editorial mechanisms Nature employs are meant to ensure the quality of the publication.

Reports of scientific research submitted to Nature undergo peer review (as do manuscripts submitted to other scholarly scientific journals). As well, Nature publishes items that are not peer-reviewed — for example, news pieces and letters to the editor. Nonetheless, the pieces published in Nature that don’t undergo peer review are subjected to editorial oversight.

Our human mechanisms for ensuring the quality of items that are published are not perfect. Peer reviewers sometimes get fooled. Editors sometimes make judgments that, in retrospect, they would not endorse.

The typical non-scientist who knows about journals like Nature is in the position of being generally trusting that peer review and editorial processes do the job of ensuring the high quality of the contents of these journals, or of being generally distrusting. Moreover, my guess is that the typical non-scientist, innocent of the division of labor on the vast editorial teams employed by journals like Nature, takes for granted that the various items published in such journals reflect sound science — or, at the very least, do not put forward claims that are clearly at odds with the body of existing scientific research.

Non-scientists, in other words, are trusting that the editorial processes at work in a journal like Nature produce a kind of conversation within the scientific community, one that weeds out stuff scientists would recognize as nonsense.

This trust is important because non-scientists do not have the same ability to identify and weed out nonsense. Nature is a kind of scientific gatekeeper for the larger public.

This trust is also something that can be played — for example, by a non-expert with an agenda who manages to get a letter published in a journal like Nature. While such correspondence may not impress a scientist, a “publication in Nature” of this sort may be taken as credible by non-scientists on the basis of the trust they have that such a well-known scientific journal must have editorial processes that reliably weed out nonsense.

In a world where we divide the cognitive labor this way, where non-scientists need to trust scientists to build reliable knowledge and organs of scientific communication to weed out nonsense, the stakes are very high for the scientists and the organs of scientific communication to live up to that trust — to get it right most of the time, and to be transparent enough about their processes that when they don’t get it right it’s reasonably easy to diagnose what went wrong and to fix it.

Otherwise, scientists and the organs of scientific communication risk losing the trust of non-scientists.

I’ve been thinking about this balance of trust and accountability in the context of a letter that was published in Nature asserting, essentially, that the underrepresentation of women as authors and peer reviewers in Nature is no kind of problem, because male scientists have merit and women scientists have child care obligations.

Kelly Hills has a clear and thorough explanation of what made publishing this particular letter problematic. It’s not just that the assertion of the letter writer are not supported by the research (examples of which Kelly helpfully links). It’s not just that there’s every reason to believe that the letter writer will try to spin the publication of his letter in Nature as reason to give his views more credence.

It’s also that the decision to publish this letter suggests the question of women’s ability to do good science is a matter of legitimate debate.

In the discussion of this letter on Twitter, I saw the suggestion that the letter was selected for publication because it was representative of a view that had been communicated by many correspondents to Nature.

In a journal that the larger public takes to be a source of views that are scientifically sound, or at least scientifically plausible (rather than at odds with a growing body of empirical research), the mere fact that many people have expressed a view in letters strikes me as insufficient reason to publish it. I suspect that if a flurry of letters were to arrive asserting that the earth is stationary in the center of the universe, or that the earth is flat, that the editorial staff in charge of correspondence wouldn’t feel the need to publish letters conveying these views — especially if the letters came from people without scientific training or active involvement in scientific work of some sort. I’d even be willing to make a modest bet that Nature regularly gets a significant amount of correspondence communicating crackpot theories of one sort or another. (I’m not running a major organ of scientific communication and I regularly get a significant amount of correspondence communicating crackpot theories of one sort or another.) Yet these crackpot theories do not regularly populate Nature’s “Correspondence” page.

In response to the objections raised to the publication of this letter, the Nature Editorial staff posted this comment:

Nature has a strong history of supporting women in science and of reflecting the views of the community in our pages, including Correspondence. Our Correspondence pages do not reflect the views of the journal or its editors; they reflect the views only of the correspondents.

We do not endorse the views expressed in this Correspondence (or indeed any Correspondences unless we explicitly say so). On re-examining the letter and the process, we consider that it adds no value to the discussion and unnecessarily inflames it, that it did not receive adequate editorial attention, and that we should not have published it, for which we apologize. This note will appear online on nature.com in the notes section of the Correspondence and in the Correspondence’s pdf.

Nature’s own positive views and engagement in the issues concerning women in science are represented by our special from 2013:
www.nature.com/women
Philip Campbell, Editor-in-Chief, Nature

(Bold emphasis added.)

I think this editorial pivot is a wise one. The letter in question may have represented a view many people have, but it didn’t offer any new facts or novel insight. And it’s not like women in science don’t know that they are fighting against biases — even biases in their own heads — every single day. They didn’t need to read a letter from some guy in Nature to become aware of this bit of their professional terrain.

So, the apology is good. But it is likely insufficient.

At this point, Nature may also have trust they need to rebuild with women, whether those women are members of the scientific community or members of the larger public. While it is true that Nature devoted a special issue to challenges faced by women in science, they also gave the editorial green light to a piece of “science fiction” that reinforced, rather than challenging the gendered assumption that make it harder for women in science.

And yes, we understand that different editors oversee the peer-reviewed reports of scientific research and the news items, the correspondence and the short fiction. But our view of organizations — our trust of organizations — tends to bundle these separate units together. This is pretty unavoidable unless we personally know each of the editors in each of the units (and even personal acquaintance doesn’t mean our trust is indestructible).

All of which is to say: as an organization, Nature still has some work to do to win back the trust of women (and others) who cannot think of the special issue on women in science without also thinking of “Womanspace” or the letter arguing that underrepresentation of women in Nature’s pages is just evidence of a meritocracy working as it should.

It would be nice to trust that Nature’s editorial processes will go forth and get it right from here on out, but we don’t want to be played for fools. As well, we may have to do additional labor going forward cleaning up the fallout from this letter in public discourses on women in science when we already had plenty of work to do in that zone.

This is a moment where Nature may want women scientists to feel warmly toward the journal, to focus on the good times as representative of where Nature really stands, but trust is something that is rebuilt, or eroded, over iterated engagements every single day.

Trust can’t be demanded. Trust is earned.

Given the role Nature plays in scientific communications and in the communication of science to a broader public, I’m hopeful the editorial staff is ready to do the hard work to earn that trust — from scientists and non-scientists alike — going forward.

* * * * *
Related posts:

Hope Jahren, Why I Turned Down a Q-and-A in Nature Magazine

Anne Jefferson, Megaphones, broken records and the problem with institutional amplification of sexism and racism