Ada Lovelace Day book review: Maria Mitchell and the Sexing of Science.

Today is Ada Lovelace Day. Last year, I shared my reflections on Ada herself. This year, I’d like to celebrate the day by pointing you to a book about another pioneering woman of science, Maria Mitchell.

Maria Mitchell and the Sexing of Science: An Astronomer among the American Romantics
by Renée Bergland
Boston: Beacon Press
2008

What is it like to be a woman scientist? In a society where being a woman is somehow a distinct experience from being an ordinary human being, the answer to this question can be complicated. And, in a time and place where being a scientist, being a professional — indeed, even being American — was still something that was very much under construction, the complexities of the answer can add up to a biography of that time, that place, that swirl of intellectual and cultural ferment, as well as of that woman scientist.

The astronomer Maria Mitchell was not only a pioneering woman scientist in the early history of the United States, but she was one of the nation’s first professional scientists. Renée Bergland’s biography of Mitchell illuminates a confluence of circumstances that made it possible for Mitchell to make her scientific contributions — to be a scientist at all. At the same time, it tracks a retrograde cultural swing of which Mitchell herself was aware: a loss, during Mitchell’s lifetime, of educational and career opportunities for women in the sciences.

Maria Mitchell was the daughter of two people who were passionate about learning, and about each other. Her mother, Lydia Coleman Mitchell, worked at both of Nantucket’s lending libraries in order to avail herself of their collections. Her father, William Mitchell, turned down a spot as a student at Harvard — which Lydia, as a woman, was barred from attending — to stay on Nantucket and make a life with Lydia. Maria was born in 1818, the third child of ten (nine of whom survived to adulthood) in a family that nurtured its daughters as well as its sons and where a near constant scarcity of resources prompted both hard work and ingenuity.

William Mitchell was one of the Nantucket men who didn’t go to sea on a whaling ship, working instead on the island in a variety of capacities, including astronomer. His astronomical knowledge was welcomed by the community in public lectures (since youth who planned to go to sea would benefit from an understanding of astronomy if they wanted to be able to navigate by the stars), and he used his expertise to calibrate the chronometers ship captains used to track their longitude while at sea.

Since he was not off at sea, William was there with Lydia overseeing the education of the Mitchell children, much of it taking place in the Mitchell home. Nantucket did not establish a public school until 1827; when it did, its first principal was William Mitchell. Maria attended the public school for the few years her father was principal, then followed him to the private school he founded on the island. William’s astronomical work, conducted at home, was part of Maria’s education, and by the time she was 11 years old, she was acting as his assistant in the work. As it was not long before Maria’s mathematical abilities and training (most of it self-taught) soon exceeded her father’s, this was a beneficial relationship on both sides.

Maria herself did some teaching of the island’s children. Later she ran the Nantucket Atheneum, a cross between a community library and a center of culture. All the while, she continued to assist her father with astronomical observations and provided the computational power that drove their collaboration. She made nightly use of the rooftop observatory at the Pacific Bank (where the Mitchell family lived when William took a post there), and one evening in 1847, Maria’s sweeps of the heavens with her telescope revealed a streak in the sky that she recognized as a new comet.

The announcement of the comet beyond the Mitchell family gives us a glimpse into just what was at stake in such a discovery. Maria herself was inclined towards modesty, some might argue pathologically so. William, however, insisted that the news must be shared, and contacted the astronomers at Harvard he knew owing to his own work. As Bergland describes it:

When Mitchell discovered the comet and her father reported it to the Bonds at Harvard [William Bonds was the director of the Harvard Observatory, his son George his assistant], the college president at the time, Edward Everett, saw an opening: Mitchell was a remarkably appealing woman whose talent and modesty were equally indisputable. She could never be accused of being a status seeker. But if Everett could convince the Danish government [which was offering a medal to the discoverer of a new comet] that reporting her discovery to the Harvard Observatory was the equivalent of reporting the discovery to the British Royal Observatory or the Danish Royal Observatory, the Harvard Observatory would gain the status of an international astronomical authority.

Maria was something of a pawn here. She was proud of her discovery, but her intense shyness made her reluctant to publicize it. Yet that shyness was exactly what made her so useful to President Everett. Her friend George Bond had also discovered comets, but he’d been unsuccessful at arguing on his own behalf against the authorities of Europe. Since Bond was directly affiliated with the Harvard College Observatory, Harvard’s hands were tied; Everett had never even tried to defend Bond’s claims. But by framing Mitchell as something of a damsel in distress, Everett could bring his diplomatic skills to bear to establish the precedent that Harvard’s observatory was as reliable as the British Royal Observatory at Greenwich. (p. 67)

There was more than just a (potential) scientific priority battle here (as other astronomers had observed this comet within a few days of Maria Mitchell’s observation of it), there was a battle for institutional credibility for Harvard and for international credibility for the United States as a nation that could produce both important science and serious scientists. Thus, “Miss Mitchell’s Comet” took on a larger significance. While Harvard at the time would have had no use for a woman student, nor for a woman professor, they found it useful to recognize Maria Mitchell as a legitimate astronomer, since doing so advanced their broader interests.

Maria Mitchell’s claim to priority for the comet (one that turned out to have an unusual orbit that was tricky to calculate) was recognized. Besides the Danish medal, this recognition got her a job. In 1849, she was hired by the United States Nautical Almanac as the “computer of Venus”, making her one of the country’s very first professional astronomers.

Her fame as an astronomer also opened doors for her (including doors to observatories) as she left Nantucket in 1857 to tour Europe. The trip was one she hoped would give her a good sense of where scientific research was headed. As it turned out, it also gave her a sense of herself as an American, a scientist, and a woman moving in a very male milieu. Maria Mitchell was horrified to encounter neglected telescopes and rules that banned women from even setting foot within certain university facilities. She rubbed shoulders with famous scientists, including one Charles Babbage and Mary Somerville, the woman William Whewell invented the word “scientist” to describe:

When Whewell groped for words and finally coined “scientist” to describe her, the issue was not primarily gender, but rather the newness of Somerville’s endeavor — her attempt to connect all the physical sciences to one another. …

Another, even more important reason that Whewell … felt the need for a new term was that a new professional identity was developing. Those who studied the material world were beginning to distinguish themselves from philosophers, whose provinces were more metaphysical than physical. But the first steps of this separation had been quite insulated from each other: chemists, mathematicians, astronomers, and the soon-to-be-named physicists did not necessarily see themselves as sharing an identity or as working at a common endeavor. Somerville’s treatise On the Connexion of the Physical Sciences was instrumental in showing the various investigators that their work was connected — they were all practitioners of science.

Although the development of the word “scientist” related more to the philosophical point (argued by Somerville) that the sciences could be unified than it did to gender, “scientist” did gradually replace the older formulation, “man of science.” Gender also entered in, Whewell thought, because as a woman, Somerville was better equipped to see connection than a man. … Whewell argued that Somerville’s womanly perspective enhanced rather than obscured her vision. (pp. 146-147)

In Somerville, Mitchell found a woman who was a fellow pioneer on something of a new frontier in terms of how doing science was perceived. Though the time Mitchell spent with Somerville was brief, the relationship involved real mentoring:

Somerville talked to her about substantive scientific questions as none of the British scientists had done; Mitchell first learned about the works of the physicist James Prescott Joule in Florence [where she met Somerville], despite having spent months in scientific circles in England, where Joule lived and worked. Somerville took Mitchell seriously as an intellect, and wanted to share her wide-ranging knowledge and encourage Mitchell in her own endeavors. She made her affection for Mitchell clear, and she offered the support and encouragement the younger scientist needed. Best of all, Mitchell liked her. She was charming and kind, someone for Mitchell to emulate in every way. (p. 151)

Somerville was not just a role model for Mitchell. The reciprocal nature of their relationship made her a true mentor for Mitchell, someone whose faith in Mitchell’s capabilities helped Mitchell herself to understand what she might accomplish. This relationship launched Mitchell towards greater engagement with the public when she returned to the U.S.

Maria Mitchell broke more ground when she was hired by the newly formed Vassar College (a women’s college) as a professor of astronomy. While she was first interviewed for the position in 1862, the trustees were locked in debate over whether a woman could properly be a professor at the college, and Mitchell was not actually appointed until 1865. Her appointment included an observatory where Mitchell conducted research, taught, and lived. At Vassar, she broke with the authoritarian, lecture-style instruction common in other departments. Instead, she engaged her students in hands-on, active learning, challenged them to challenge her, and involved them in astronomical research. And, when it became clear that there was not enough time in a day to fully meet the competing demands of teaching and research (plus other professional duties and her duties to her family), Mitchell recorded a resolution in her notebook:

RESOLVED: In case of my outliving father and being in good health, to give my efforts to the intellectual culture of women, without regard to salary. (p. 203)

Such a commitment was vital to Maria Mitchell, especially as, during her time at Vassar, she was aware of a societal shift that was narrowing opportunities for women to participate in the sciences or in intellectual pursuits, in the realms of both education and professions. Pioneer though she was, she saw her female students being offered less by the world than she was, and it made her sad and angry.

Renée Bergland’s biography of Maria Mitchell lays out the complexities at work in Mitchell’s family environment, in the culturally rich yet geographically isolated Nantucket island, in the young United States, and in the broader international community of scientific thinkers and researchers. The factors that play a role in a person’s educational and intellectual trajectory are fascinating to me, in part because so many of them seem like they’re just a matter of chance. How important was it to Maria Mitchell’s success that she grew up in Nantucket, when she did, with the parents that she had? If she had grown up in Ohio or Europe, if she had been born a few decades earlier or later, if her parents had been less enthusiastic about education, is there any way she would have become an astronomer? How much of the early recognition of Mitchell’s work was connected to the struggle of the U.S. as a relatively new country to establish itself in the international community of science? (Does it even make sense to think of an international community of science in the mid-nineteenth century? Was it less about having American scientists accepted into such a community and more about national bragging rights? What might be the current state of the U.S. scientifically if other opportunities to establish national prowess had been pursued instead?)

Especially gripping are the questions about the proper role of females in scientific pursuits, and how what was “proper” seemed contingent upon external factors, including the availability (or not) of men for scientific labors during the American Civil War. I was surprised, reading this book, to discover that science and mathematics were considered more appropriate pursuits for girls (while philosophy and classical languages were better suited to boys) when Maria Mitchell was young. (How, in light of this history, do so many people get away with insinuating that females lack the intrinsic aptitude for science and math?) The stereotype in Mitchell’s youth that sciences were appropriate pursuits for girls seems to have been based on a certain kind of essentialism about what girls are like, as well as what I would identify as a misunderstanding about how the sciences operate and what kind of picture of the world they can be counted on to deliver. Mitchell, as much as anyone, seemed to be pushing her astronomical researches in a direction very different from the “safe” science people expected — yet in her writings, she also makes claims about women that could be read as essentialist, too. It’s hard to know whether these were these rhetorical moves, or whether Mitchell really bought into there being deep, fundamental differences between the sexes. This makes her story more complicated — and more compelling — than a straightforward narrative of a heroic scientist and professor battling injustice.

Indeed, there are moments here where I wanted to grab Maria Mitchell by the shoulders and shake her, as when she negotiated a lower salary for herself at Vassar than she was offered, even though she foresaw that it would lead to unfairly low salaries of the women faculty who followed her. Was her rejection of the higher salary just a matter of being honest to a fault about her limited teaching experience and her wavering self-confidence? Was she instead worried that accepting the higher salary might give the trustees an excuse not to take on the college’s first woman professor? Was opening the doors to other women in the professorate a more pressing duty than ensuring they would get the same respect — or at least, the same pay — as their male counterparts?

Given the seriousness with which Mitchell approached the task of increasing educational and professional opportunities for women, I can’t help but wondering how many of her choices were driven by a sense of duty. On balance, did Mitchell live the life she wanted to live, or the life she thought she ought to live to make things better? (Would she have drawn such a distinction herself?)

Some of these questions are connected to the various other strands of this rich biography. For example, Bergland does quite a lot to explore Maria Mitchell’s Quaker background, her own inclination to part company with the Society of Friends on certain matters of religious belief, the influence of her cultural Quakerism on and off Nantucket island, even how her plain Quaker dress made her an exotic and an object of curiosity during her travels through Europe at a time when the U.S. was arguably a developing country.

Bergland’s book is a captivating read that will be of interest to anyone curious about the development of educational institutions and professional communities, about the ways political and societal forces pull at the life of the mind, or about the ways people come to steer their interactions in many different circles to achieve what they think must be achieved.

An earlier version of this review was first published here.

* * * * *

Want to help kids in a high poverty high school get outside and really experience astronomy? Please consider supporting “Keep Looking Up”, a DonorsChoose project aimed at purchasing a telescope for a brand new astronomy class in Chouteau, OK. Even a few dollars can make a difference.

Who profits from killing Pluto?

You may recall (as I and my offspring do) the controversy about six years ago around the demotion of Pluto. There seemed to me to be reasonable arguments on both sides, and indeed, my household included pro-Pluto partisans and partisans for a new, clear definition of “planet” that might end up leaving Pluto on the exo-planet side of the line.

At the time, Neil deGrasse Tyson was probably the most recognizable advocate of the anti-Pluto position, and since then he has not been shy about reaffirming his position. I had taken this vocal (even gleeful) advocacy as just an instance of a scientist working to do effective public outreach, but recently, I’ve been made aware of reasons to believe that there may be more going on with Neil deGrasse Tyson here.

You may be familiar with the phenomenon of offshore banking, which involves depositors stashing their assets in bank accounts in countries with much lower taxes than the jurisdictions in which the depositors actually reside. Indeed, residents of the U.S. have occasionally used offshore bank accounts (and bank secrecy policies) to hide their money from the prying (and tax-assessing) eyes of the Internal Revenue Service.

Officially, those who are subject to U.S. income tax are required to declare any offshore bank accounts they might have. However, since the offshore banks themselves have generally not been required by law to report interest income on their accounts to the U.S. tax authorities, lots of account holders have kept mum about it, too.

Recently, however, the U.S. government has been more vigorous in its efforts to track down this taxable offshore income, and has put more pressure on the offshore bankers not to aid their depositors in hiding assets. International pressure seems to be pushing banks in the direction of more transparency and accountability.

What does any of this have to do with Neil deGrasse Tyson, or with Pluto?

You may recall, back when the International Astronomical Union (IAU) was formally considering the question of Pluto’s status, that Neil deGrasse Tyson was a vocal proponent of demoting Pluto from planethood. Despite his position at the Hayden Planetarium, a position in which he had rather more contact with school children and other interested non-scientists making heartfelt arguments in support of Pluto’s planethood, Neil deGrasse Tyson was utterly unmoved.

Steely in his determination to get Pluto reclassified. And forward looking. Add to that remarkably well-dressed (seriously, have you seen his vests?) for a Ph.D. astrophysicist who has spent most of his career working for museums.

The only way it makes sense is if Neil deGrasse Tyson has been stashing money someplace it can earn interest without being taxed. Given his connections, this can only mean off-world banking.

But again, what does this have to do with Pluto?

Pluto killer though he may be, Neil deGrasse Tyson is law abiding. There have so far been no legal requirements to report interest income earned in banks on other planets. But Neil deGrasse Tyson, as a forward looking kind of guy, undoubtedly recognizes that regulators are rapidly moving in the direction of requiring those subject to U.S. income tax to declare their bank accounts on other planets.

The regulators, however, seem uninterested in making any such requirements for those with assets in off-world banks that are not on planets. Which means that while Pluto is less than 1/5 the mass of Earth’s Moon, as a non-planet, it will remain a convenient place for Neil deGrasse Tyson to benefit from compound interest without increasing his tax liability.

It kind of casts his stance on Pluto in a different light, doesn’t it?

[More details in this story from the Associated Press.]