Mentoring new scientists in the space between how things are and how things ought to be.

Scientists mentoring trainees often work very hard to help their trainees grasp what they need to know not only to build new knowledge, but also to succeed in the context of a career landscape where score is kept and scarce resources are distributed on the basis of scorekeeping. Many focus their protégés’ attention on the project of understanding the current landscape, noticing where score is being kept, working the system to their best advantage.

But is teaching protégés how to succeed as a scientist in the current structural social arrangements enough?

It might be enough if you’re committed to the idea that the system as it is right now is perfectly optimized for scientific knowledge-building, and for scientific knowledge-builders (and if you view all the science PhDs who can’t find permanent jobs in the research careers they’d like to have as acceptable losses). But I’d suggest that mentors can do better by their protégés.

For one thing, even if current conditions were optimal, they might well change due to influences from outside the community of knowledge-builders, as when the levels of funding change at the level of universities or of funding agencies. Expecting that the landscape will be stable over the course of a career is risky.

For another thing, it seems risky to take as given that this is the best of all possible worlds, or of all possible bundles of practices around research, communication of results, funding of research, and working conditions for scientists. Research on scientists suggests that they themselves recognize the ways in which the current system and its scorekeeping provides perverse incentives that may undercut the project of building reliable knowledge about the world. As well, the competition for scarce resources can result in a “science red in tooth and claw” dynamic that, at best, leads to the rational calculation that knowledge-builders ought to work more hours and partake of fewer off-the-clock “distractions” (like family, or even nice weather) in order not to fall behind.

Just because the scientific career landscape manifests in the particular way it does right now doesn’t mean that it must always be this way. As the body of reliable knowledge about the world is perpetually under construction, we should be able to recognize the systems and social arrangements in which scientists work as subject to modification, not carved into granite.

Restricting your focus as a mentor to imparting strategies for success given how things are may also convey to your protégés that this is the way things will always be — or that this is the way things should always be. I hope we can do better than that.

It can be a challenge to mentor with an eye to a set of conditions that don’t currently exist. Doing so involves imagining other ways of doing things. Doing it as more than a thought experiment also involves coordinating efforts with others — not just with trainees, but with established members of the professional community who have a bit more weight to throw around — to see what changes can be made and how, given the conditions you’re starting from. It may also require facing pushback from colleagues who are fine with the status quo (since it has worked well for them).

Indeed, mentoring with an eye to creating better conditions for knowledge-building and for knowledge-builders may mean agitating for changes that will primarily benefit future generations of your professional community, not your own.

But mentoring someone, welcoming them into your professional community and equipping them to be a full member of it, is not primarily about you. It is something that you do for the benefit of your protégé, and for the benefit of the professional community they are joining. Equipping your protégé for how things are is a good first step. Even better is encouraging them to imagine, to bring about, and to thrive in conditions that are better for your shared pursuit.

Adjudicating “misbehavior”: how can scientists respond when they don’t get fair credit?

As I mentioned in an earlier post, I recently gave a talk at UC – Berkeley’s Science Leadership and Management (SLAM) seminar series. After the talk (titled “The grad student, the science fair, the reporter, and the lionfish: a case study of competition, credit, and communication of science to the public”), there was a discussion that I hope was at least as much fun for the audience as it was for me.

One of the questions that came up had to do with what recourse members of the scientific community have when other scientists are engaged in behavior that is problematic but that falls short of scientific misconduct.

If a scientist engages in fabrication, falsification, or plagiarism — and if you can prove that they have done so — you can at least plausibly get help from your institution, or the funder, or the federal government, in putting a stop to the bad behavior, repairing some of the damage, and making sure the wrongdoer is punished. But misconduct is a huge line to cross, so harmful to the collective project of scientific knowledge-building that, scientists hope, most scientists would never engage in it, no matter how dire the circumstances.

Other behavior that is ethically problematic in the conduct of science, however, is a lot more common. Disputes over appropriate credit for scientific contributions (which is something that came up in my talk) are sufficiently common that most people who have been in science for a while have first-hand stories they can tell you.

Denying someone of fair credit for the contribution they made to a piece of research is not a good thing. But who can you turn to if someone does it to you? Can the Office of Research Integrity go after the coauthor who didn’t fully acknowledge your contribution to your joint paper (and in the process knocked you from second author to third), or will you have to suck it up?

At the heart of the question is the problem of working out what mechanisms are currently available to address this kind of problem.

Is it possible to stretch the official government definition of plagiarism“the appropriation of another person’s ideas, processes, results, or words without giving appropriate credit” — to cover the situation where you’re being given credit but not enough?

When scientists work out who did enough to be an author on a scientific paper reporting a research finding — and how the magnitude of the various contributions should be reflected in the ordering of names in the author line — is there a clear, objective, correct answer? Are there widely accepted standards that scientists are using to assign appropriate credit? Or, do the standards vary locally, situationally? Is the lack of a clear set of shared standards the kind of thing that creates ambiguities that scientists are prepared to use to their own advantage when they can?

We’ve discussed before the absence of a single standard for authorship embraced uniformly by the Tribe of Science as a whole. Maybe making the case for such a shared standard would help scientists protect themselves from having their contributions minimized — and also help them not unintentionally minimize the contributions of others.

While we’re waiting for a shared standard to gain acceptance, however, there are a number of scientific journals that clearly spell out their own standards for who counts as an author and what kinds of contributions to research and the writing of the paper do or do not rise to the level of receiving authorship credit. If you have submitted your work to a journal with a clear policy of this sort, and if your coauthors have subverted the policy to misrepresent your contribution, you can bring the problem to the journal editors. Indeed, Retraction Watch is brimming with examples of papers that have been retracted on account of problems with who is, or is not, credited with the work that had been published.

While getting redress form a journal editor may be better than nothing, a retraction is the kind of thing that leaves a mark on a scientific reputation — and on the relationships scientists need to be able to coordinate their efforts in the project of scientific knowledge-building. I would argue, however, that not giving the other scientists you work with fair credit for their contributions is also harmful to those relationships, and to the reputations of the scientists who routinely minimize the contributions of others while inflating their own contributions.

So maybe one of the most important things scientists can do right now, given the rules and the enforcement mechanisms that currently exist, the variance in standards and the ambiguities which they create, is to be clear in communicating about contributions and credit from the very beginning of every collaboration. As people are making contributions to the knowledge being built, explicitly identifying those contributions strikes me as a good practice that can help keep other people’s contributions from escaping our notice. Talking about how the different pieces lead to better understanding of what’s going on may also help the collaborators figure out how to make more progress on their research questions by bringing additional contributions to bear.

Of course, it may be easier to spell out what particular contributions each person in the collaboration made than to rank them in terms of which contribution was the biggest or the most important. But maybe this is a good argument for an explicit authorship standard in which authors specify the details of what they contributed and sidestep the harder question of whether experimental design was more or less important that the analysis of the data in this particular collaboration.

There’s a funny kind of irony in feeling like you have better tools to combat bad behavior that happens less frequently than you do to combat bad behavior that happens all the time. Disputes about credit may feel minor enough to be tolerable most of the time, differences of opinion that can expose power gradients in scientific communities that like to think of themselves as egalitarian. But especially for the folks on the wrong end of the power gradients, the erosion of recognition for their hard work can hurt. It may even lessen their willingness to collaborate with other scientists, impoverishing the opportunities for cooperation that help the knowledge get built efficiently. Scientists are entitled to expect better of each other. When they do — and when they give voice to those expectations (and to their disappointment when their scientific peers don’t live up to them) — maybe disputes over fair credit will become rare enough that someday most people who have been in science for a while won’t have first-hand stories they can tell you about them.

Some thoughts about the suicide of Yoshiki Sasai.

In the previous post I suggested that it’s a mistake to try to understand scientific activity (including misconduct and culpable mistakes) by focusing on individual scientists, individual choices, and individual responsibility without also considering the larger community of scientists and the social structures it creates and maintains. That post was where I landed after thinking about what was bugging me about the news coverage and discussions about recent suicide of Yoshiki Sasai, deputy director of the Riken Center for Developmental Biology in Kobe, Japan, and coauthor of retracted papers on STAP cells.

I went toward teasing out the larger, unproductive pattern I saw, on the theory that trying to find a more productive pattern might help scientific communities do better going forward.

But this also means I didn’t say much about my particular response to Sasai’s suicide and the circumstances around it. I’m going to try to do that here, and I’m not going to try to fit every piece of my response into a larger pattern or path forward.

The situation in a nutshell:

Yoshiki Sasai worked with Haruko Obokata at the Riken Center on “stimulus-triggered acquisition of pluripotency”, a method by which exposing normal cells to a stress (like a mild acid) supposedly gave rise to pluripotent stem cells. It’s hard to know how closely they worked together on this; in the papers published on STAP. Obokata was the lead-author and Sasai was a coauthor. It’s worth noting that Obokata was some 20 years younger than Sasai, an up-and-coming researcher. Sasai was a more senior scientist, serving in a leadership position at the Riken Center and as Obokata’s supervisor there.

The papers were published in a high impact journal (Nature) and got quite a lot of attention. But then the findings came into question. Other researchers trying to reproduce the findings that had been reported in the papers couldn’t reproduce them. One of the images in the papers seemed to be a duplicate of another, which was fishy. Nature investigated, Riken investigated, the papers were retracted, Obokata continued to defend the papers and to deny any wrongdoing.

Meanwhile, a Riken investigation committee said “Sasai bore heavy responsibility for not confirming data for the STAP study and for Obokata’s misconduct”. This apparently had a heavy impact on Sasai:

Sasai’s colleagues at Riken said he had been receiving mental counseling since the scandal surrounding papers on STAP, or stimulus-triggered acquisition of pluripotency, cells, which was lead-authored by Obokata, came to light earlier this year.

Kagaya [head of public relations at Riken] added that Sasai was hospitalized for nearly a month in March due to psychological stress related to the scandal, but that he “recovered and had not been hospitalized since.”

Finally, Sasai hanged himself in a Riken stairwell. One of the notes he left, addressed to Obokata, urged her to reproduce the STAP findings.

So, what is my response to all this?

I think it’s good when scientists take their responsibilities seriously, including the responsibility to provide good advice to junior colleagues.

I also think it’s good when scientists can recognize the limits. You can give very, very good advice — and explain with great clarity why it’s good advice — but the person you’re giving it to may still choose to do something else. It can’t be your responsibility to control another autonomous person’s actions.

I think trust is a crucial part of any supervisory or collaborative relationship. I think it’s good to be able to interact with coworkers with the presumption of trust.

I think it’s awful that it’s so hard to tell which people are not worthy of our trust before they’ve taken advantage of our trust to do something bad.

Finding the right balance between being hands-on and giving space is a challenge in the best of supervisory or mentoring relationships.

Bringing an important discovery with the potential to enable lots of research that could ultimately help lots of people to one’s scientific peers — and to the public — must feel amazing. Even if there weren’t a harsh judgment from the scientific community for retraction, I imagine that having to say, “We jumped the gun on the ‘discovery’ we told you about” would not feel good.

The danger of having your research center’s reputation tied to an important discovery is what happens if that discovery doesn’t hold up, whether because of misconduct or mistakes. And either way, this means that lots of hard work that is important in the building of the shared body of scientific knowledge (and lots of people doing that hard work) can become invisible.

Maybe it would be good to value that work on its own merits, independent of whether anyone else judged it important or newsworthy. Maybe we need to rethink the “big discoveries” and “important discoverers” way of thinking about what makes scientific work or a research center good.

Figuring out why something went wrong is important. When the something that went wrong includes people making choices, though, this always seems to come down to assigning blame. I feel like that’s the wrong place to stop.

I feel like investigations of results that don’t hold up, including investigations that turn up misconduct, should grapple with the question of how can we use what we found here to fix what went wrong? Instead of just asking, “Whose fault was this?” why not ask, “How can we address the harm? What can we learn that will help us avoid this problem in the future?”

I think it’s a problem when a particular work environment makes the people in it anxious all the time.

I think it’s a problem when being careful feels like an unacceptable risk because it slows you down. I think it’s a problem when being first feels more important than being sure.

I think it’s a problem when a mistake of judgment feels so big that you can’t imagine a way forward from it. So disastrous that you can’t learn something useful from it. So monumental that it makes you feel like not existing.

I feel like those of us who are still here have a responsibility to pay attention.

We have a responsibility to think about the impacts of the ways science is done, valued, celebrated, on the human beings who are doing science — and not just on the strongest of those human beings, but also on the ones who may be more vulnerable.

We have a responsibility to try to learn something from this.

I don’t think what we should learn is not to trust, but how to be better at balancing trust and accountability.

I don’t think what we should learn is not to take the responsibilities of oversight seriously, but to put them in perspective and to mobilize more people in the community to provide more support in oversight and mentoring.

Can we learn enough to shift away from the Important New Discovery model of how we value scientific contributions? Can we learn enough that cooperation overtakes competition, that building the new knowledge together and making sure it holds up is more important than slapping someone’s name on it? I don’t know.

I do know that, if the pressures of the scientific career landscape are harder to navigate for people with consciences and easier to navigate for people without consciences, it will be a problem for all of us.

When focusing on individual responsibility obscures shared responsibility.

Over many years of writing about ethics in the conduct of science, I’ve had occasion to consider many cases of scientific misconduct and misbehavior, instances of honest mistakes and culpable mistakes. Discussions of these cases in the media and among scientists often make them look aberrant, singular, unconnected — the Schön case, the Hauser case, Aetogate, the Sezen-Sames case, the Hwang Woo-Sook case, the Stapel case, the Van Parijs case.* They make the world of science look binary, a set of unproblematically ethical practitioners with a handful of evil interlopers who need only be identified and rooted out.

I don’t think this approach is helpful, either in preventing misconduct, misbehavior, and mistakes, or in mounting a sensible response to the people involved in them.

Indeed, despite the fact that scientific knowledge-building is inherently a cooperative activity, the tendency to focus on individual responsibility can manifest itself in assignment of individual blame on people who “should have known” that another individual was involved in misconduct or culpable mistakes. It seems that something like this view — whether imposed from without or from within — may have been a factor in the recent suicide of Yoshiki Sasai, deputy director of the Riken Center for Developmental Biology in Kobe, Japan, and coauthor of retracted papers on STAP cells.

While there seems to be widespread suspicion that the lead-author of the STAP cell papers, Haruko Obokata, may have engaged in research misconduct of some sort (something Obokata has denied), Sasai was not himself accused of research misconduct. However, in his role as an advisor to Obokata, Sasai was held responsible by Riken’s investigation for not confirming Obokata’s data. Sasai expressed shame over the problems in the retracted papers, and had been hospitalized prior to his suicide in connection to stress over the scandal.

Michael Eisen describes the similarities here to his own father’s suicide as a researcher at NIH caught up in the investigation of fraud committed by a member of his lab:

[A]s the senior scientists involved, both Sasai and my father bore the brunt of the institutional criticism, and both seem to have been far more disturbed by it than the people who actually committed the fraud.

It is impossible to know why they both responded to situations where they apparently did nothing wrong by killing themselves. But it is hard for me not to place at least part of the blame on the way the scientific community responds to scientific misconduct.

This response, Eisen notes, goes beyond rooting out the errors in the scientific record and extends to rooting out all the people connected to the misconduct event, on the assumption that fraud is caused by easily identifiable — and removable — individuals, something that can be cut out precisely like a tumor, leaving the rest of the scientific community free of the cancer. But Eisen doesn’t believe this model of the problem is accurate, and he notes the damage it can do to people like Sasai and like his own father:

Imagine what it must be like to have devoted your life to science, and then to discover that someone in your midst – someone you have some role in supervising – has committed the ultimate scientific sin. That in and of itself must be disturbing enough. Indeed I remember how upset my father was as he was trying to prove that fraud had taken place. But then imagine what it must feel like to all of a sudden become the focal point for scrutiny – to experience your colleagues and your field casting you aside. It must feel like your whole world is collapsing around you, and not everybody has the mental strength to deal with that.

Of course everyone will point out that Sasai was overreacting – just as they did with my father. Neither was accused of anything. But that is bullshit. We DO act like everyone involved in cases of fraud is responsible. We do this because when fraud happens, we want it to be a singularity. We are all so confident this could never happen to us, that it must be that somebody in a position of power was lax – the environment was flawed. It is there in the institutional response. And it is there in the whispers …

Given the horrible incentive structure we have in science today – Haruko Obokata knew that a splashy result would get a Nature paper and make her famous and secure her career if only she got that one result showing that you could create stem cells by dipping normal cells in acid – it is somewhat of a miracle that more people don’t make up results on a routine basis. It is important that we identify, and come down hard, on people who cheat (although I wish this would include the far greater number of people who overhype their results – something that is ultimately more damaging than the small number of people who out and out commit fraud).

But the next time something like this happens, I am begging you to please be careful about how you respond. Recognize that, while invariably fraud involves a failure not just of honesty but of oversight, most of the people involved are honest, decent scientists, and that witch hunts meant to pretend that this kind of thing could not happen to all of us are not just gross and unseemly – they can, and sadly do, often kill.

As I read him, Eisen is doing at least a few things here. He is suggesting that a desire on the part of scientists for fraud to be a singularity — something that happens “over there” at the hands of someone else who is bad — means that they will draw a circle around the fraud and hold everyone on the inside of that circle (and no one outside of it) accountable. He’s also arguing that the inside/outside boundary inappropriately lumps the falsifiers, fabricators, and plagiarists with those who have committed the lesser sin of not providing sufficient oversight. He is pointing out the irony that those who have erred by not providing sufficient oversight tend to carry more guilt than do those they were working with who have lied outright to their scientific peers. And he is suggesting that needed efforts to correct the scientific record and to protect the scientific community from dishonest researchers can have tragic results for people who are arguably less culpable.

Indeed, if we describe Sasai’s failure as a failure of oversight, it suggests that there is some clear benchmark for sufficient oversight in scientific research collaborations. But it can be very hard to recognize that what seemed like a reasonable level of oversight was insufficient until someone who you’re supervising or with whom you’re collaborating is caught in misbehavior or a mistake. (That amount of oversight might well have been sufficient if the person one was supervising chose to behave honestly, for example.) There are limits here. Unless you’re shadowing colleagues 24/7, oversight depends on some baseline level of trust, some presumption that one’s colleagues are behaving honestly rather than dishonestly.

Eisen’s framing of the problem, though, is still largely in terms of the individual responsibility of fraudsters (and over-hypers). This prompts arguments in response about individuals bearing responsibility for their actions and their effects (including the effects of public discussion of those actions and about the individual scientists who are arguably victims of data fabrication and fraud. We are still in the realm of conceiving of fraudsters as “other” rather than recognizing that honest, decent scientists may be only a few bad decisions away from those they cast as monsters.

And we’re still describing the problem in terms of individual circumstances, individual choices, and individual failures.

I think Eisen is actually on the road to pointing out that a focus primarily on the individual level is unhelpful when he points to the problems of the scientific incentive structure. But I think it’s important to explicitly raise the alternate model, that fraud also flows from a collective failure of the scientific community and of the social structures it has built — what is valued, what is rewarded, what is tolerated, what is punished.

Arguably, one of the social structures implicated in scientific fraud is the first across the finish line, first to publish in a high impact journal model of scientific achievement. When being second to a discovery counts for exactly nothing (after lots of time, effort, and other resources have been invested), there is much incentive for haste and corner-cutting, and sometimes even outright fraud. This provides temptations for researchers — and dangers for those providing oversight to ambitious colleagues who may fall prey to such temptations. But while misconduct involves individuals making bad decisions, it happens in the context of a reward structure that exists because of collective choices and behaviors. If the structures that result from those collective choices and behaviors make some kinds of individual choices that are pathological to the shared project (building knowledge) rational choices for the individual to make under the circumstances (because they help the individual secure the reward), the community probably has an interest in examining the structures it has built.

Similarly, there are pathological individual choices (like ignoring or covering up someone else’s misconduct) that seem rational if the social structures built by the scientific community don’t enable a clear path forward within the community for scientists who have erred (whether culpably or honestly). Scientists are human. They get attached to their colleagues and tend to believe them to be capable of learning from their mistakes. Also, they notice that blowing the whistle on misconduct can lead to isolation of the whistleblower, not just the people committing the misconduct. Arguably, these are failures of the community and of the social structures it has built.

We might even go a step further and consider whether insisting on talking about scientific behavior (and misbehavior) solely in terms of individual actions and individual responsibility is part of the problem.

Seeing the scientific enterprise and things that happen in connection with it in terms of heroes and villains and innocent bystanders can seem very natural. Taking this view also makes it look like the most rational choice for scientists to plot their individual courses within the status quo. The rules, the reward structures, are taken almost as if they were carved in granite. How could one person change them? What would be the point of opting out of publishing in the high impact journals, since it would surely only hurt the individual opting out while leaving the system intact? In a competition for individual prestige and credit for knowledge built, what could be the point of pausing to try to learn something from the culpable mistakes committed by other individuals rather than simply removing those other individuals from the competition?

But individual scientists are not working in isolation against a fixed backdrop. Treating their social structures as if they were a fixed backdrop not only obscures that these structures result from collective choices but also prevents scientists from thinking together about other ways the institutional practice of science could be.

Whether some of the alternative arrangements they could create might be better than the status quo — from the point of view of coordinating scientific efforts, improving scientists’ quality of life, or improving the quality of the body of knowledge scientist are building — is surely an empirical question. But just as surely it is an empirical question worth exploring.

______
* It’s worth noticing that failures of safety are also frequently characterized as singular events, as in the Sheri Sangji/Patrick Harran case. As I’ve discussed at length on this blog, there is no reason to imagine the conditions in Harran’s lab that led to Sangji’s death were unique, and there is plenty of reason for the community of academic researchers to try to cultivate a culture of safety rather than individually hoping their own good luck will hold.

On the value of empathy, not othering.

Could seeing the world through the eyes of the scientist who behaves unethically be a valuable tool for those trying to behave ethically?

Last semester, I asked my “Ethics in Science” students to review an online ethics training module of the sort that many institutions use to address responsible conduct of research with their students and employees. Many of my students elected to review the Office of Research Integrity’s interactive movie The Lab, which takes you through a “choose your own adventure” scenario in as academic lab as one of four characters (a graduate student, a postdoc, the principal investigator, or the institution’s research integrity officer). The scenario surrounds research misconduct by another member of the lab, and your goal is to do what you can to address the problems — and to avoid being drawn into committing misconduct yourself.

By and large, my students reported that “The Lab” was a worthwhile activity. As part of the assignment, I asked them to suggest changes, and a number of them made what I thought was a striking suggestion: players should have the option to play the character who commits the misconduct.

I can imagine some imminently sensible reasons why the team that produced “The Lab” didn’t include the cheater as a playable character. For instance, if the scenario were to start before the decision to cheat and the user playing this character picks the options that amount to not cheating, you end up with a story that lacks almost all of the drama. Similarly, if you pick up with that character in the immediate aftermath of the instance of cheating and go with the “come clean/don’t dig a deeper hole” options, the story ends pretty quickly.

Setting the need for dramatic tension aside, I suspect that another reason that “The Lab” doesn’t include the cheater as a playable character is that people who are undergoing research ethics training are supposed to think of themselves as people who would not cheat. Rather, they’re supposed to think of themselves as ethical folks who would resist temptation and stand up to cheating when others do it. These training exercises bring out some of the particular challenges that might be associated with making good ethical decisions (many of them connected to seeing a bit further down the causal chain to anticipate the likely consequences of your choices), but they tend to position the cheater as just part of the environment to which the ethical researcher must respond.

I think this is a mistake. I think there may be something valuable in being able to view those who commit misconduct as more than mere antagonists or monsters.

Part of what makes “The Lab” a useful exercise is that it presents situations with a number of choices available to us, some easier and some harder, some likely to lead to interactions that are more honest and fair and others more likely to lead to problems. In real life, though, we don’t usually have the option of rewinding time and choosing a different option if our first choice goes badly. Nor do we have assurance that we’ll end up being the good guys.

It’s important to understand the temptations that the cheaters felt — the circumstances that made their unethical behaviors seem expedient, or rational, or necessary. Casting cheaters as monsters is glossing over our own human vulnerability to these bad choices, which will surely make the temptations harder to handle when we encounter them. Moreover, understanding the cheaters as humans (just like the scientists who haven’t cheated) rather than “other” in some fundamental way lets us examine those temptations and then collectively create working environments with fewer of them. Though it’s part of a different discussion, Ashe Dryden describes the dangers of “othering” here quite well:

There is no critical discussion about what leads to these incidents — what parts of our culture allow these things to go unchecked for so long, how pervasive they are, and how so much of this is rewarded directly or indirectly. …

It’s important to notice what is happening here: by declaring that the people doing these things are others, it removes the need to examine our own actions. The logic assumed is that only bad people do these things and we aren’t bad people, so we couldn’t do something like this. Othering effectively absolves ourselves of any blame.

The dramatic arc of “The Lab” is definitely not centered on the cheater’s redemption, nor on cultivating empathy for him, and in the context of the particular training it offers, that’s fine. Sometimes one’s first priority is protecting or repairing the integrity of the scientific record, or ensuring a well-functioning scientific community by isolating a member who has proven himself untrustworthy.

But, that member of the community who we’re isolating, or rehabilitating, is connected to the community — connected to us — in complicated ways. Misconduct doesn’t just happen, but neither is it the case that, when someone commits it, it’s just the matter of the choices and actions of an individual in a vacuum.

The community is participating in creating the environment in which people commit misconduct. Trying to understand the ways in which behaviors, expectations, formal and informal reward systems, and the like can encourage big ethical transgressions or desensitize people to “little” lapses may be a crucial step to creating an environment where fewer people commit misconduct, whether because the cost of doing so is too high or the payoff for doing so (if you get away with it) is too low.

But seeing members of the community as connected in this way requires not seeing the research environment as static and unchangeable — and not seeing those in the community who commit misconduct as fundamentally different creatures from those who do not.

All of this makes me think that part of the voluntary exclusion deals between people who have committed misconduct and the ORI should be an allocution, in which the wrongdoer spells out the precise circumstances of the misconduct, including the pressures in the foreground when the wrongdoer chose the unethical course. This would not be an excuse but an explanation, a post-mortem of the misconduct available to the community for inspection and instruction. Ideally, others might recognize familiar situations in the allocution and then consider how close their own behavior in such situations has come to crossing ethical lines, as well as what factors seemed to help them avoid crossing those lines. As well, researchers could think together about what gives rise to the situations and the temptations within them and explore whether common practices can be tweaked to remove some of the temptations while supporting knowledge-building and knowledge builders.

Casting cheaters as monsters doesn’t do much to help people make good choices in the face of difficult circumstances. Ignoring the ways we contribute to creating those circumstances doesn’t help, either — and may even increase the risk that we’ll become like the “monsters” we decry

Do permanent records of scientific misconduct findings interfere with rehabilitation?

We’ve been discussing how the scientific community deals with cheaters in its midst and the question of whether scientists view rehabilitation as a live option. Connected to the question of rehabilitation is the question of whether an official finding of scientific misconduct leaves a permanent mark that makes it practically impossible for someone to function within the scientific community — not because the person who has committed the conduct is unable to straighten up and fly right, but because others in the scientific community will no longer accept that person in the scientific knowledge-building endeavor, no matter what their behavior.

A version of this worry is at the center of an editorial by Richard Gallagher that appeared in The Scientist five years ago. In it, Gallagher argued that the Office of Research Integrity should not include findings of scientific misconduct in publications that are archived online, and that traces of such findings that persist after the period of debarment from federal funding has ended are unjust. Gallagher wrote:

For the sake of fairness, these sentences must be implemented precisely as intended. This means that at the end of the exclusion period, researchers should be able to participate again as full members of the scientific community. But they can’t.

Misconduct findings against a researcher appear on the Web–indeed, in multiple places on the Web. And the omnipresence of the Web search means that reprimands are being dragged up again and again and again. However minor the misdemeanor, the researcher’s reputation is permanently tarnished, and his or her career is invariably ruined, just as surely as if the punishment were a lifetime ban.

Both the NIH Guide and The Federal Register publish findings of scientific misconduct, and are archived online. As long as this continues, the problem will persist. The director of the division of investigative oversight at ORI has stated his regret at the “collateral damage” caused by the policy (see page 32). But this is not collateral damage; it is a serious miscarriage of justice against researchers and a stain on the integrity of the system, and therefore of science.

It reminds me of the system present in US prisons, in which even after “serving their time,” prisoners will still have trouble finding work because of their criminal records. But is it fair to compare felons to scientists who have, for instance, fudged their affiliations on a grant application when they were young and naïve?

It’s worth noting that the ORI website seems currently to present information for misconduct cases where scientists haven’t yet “served out their sentences”, featuring the statement:

This page contains cases in which administrative actions were imposed due to findings of research misconduct. The list only includes those who CURRENTLY have an imposed administrative actions against them. It does NOT include the names of individuals whose administrative actions periods have expired.

In the interaction between scientists who have been found to have committed scientific misconduct and the larger scientific community, we encounter the tension between the rights of the individual scientist and the rights of the scientific community. This extends to the question of the magnitude of a particular instance of misconduct, or of whether it was premeditated or merely sloppy, or of whether the offender was young and naïve or old enough to know better. An oversight or mistake in judgment that may strike the individual scientist making it as no big deal (at least at the time) can have significant consequences for the scientific community in terms of time wasted (e.g., trying to reproduce reported results) and damaged trust.

The damaged trust is not a minor thing. Given that the scientific knowledge-building enterprise relies on conditions where scientists can trust their fellow scientists to make honest reports (whether in the literature, in grant proposals, or in less formal scientific communications), discovering a fellow scientist whose relationship with the truth is more casual is a very big deal. Flagging liars is like tagging a faulty measuring device. It doesn’t mean you throw them out, but you do need to go to some lengths to reestablish their reliability.

To the extent that an individual scientist is committed to the shared project of building a reliable body of scientific knowledge, he or she ought to understand that after a breach, one is not entitled to a full restoration of the community’s trust. Rather, that trust must be earned back. One step in earning back trust is to acknowledge the harm the community suffered (or at least risked) from the dishonesty. Admitting that you blew it, that you are sorry, and that others have a right to be upset about it, are all necessary preliminaries to making a credible claim that you won’t make the same mistake again.

On the other hand, protesting that your screw-ups really weren’t important, or that your enemies have blown them out of proportion, might be an indication that you still don’t really get why your scientific colleagues are unhappy about your behavior. In such a circumstance, although you may have regained your eligibility to receive federal grant money, you may still have some work left to do to demonstrate that you are a trustworthy member of the scientific community.

It’s true that scientific training seems to go on forever, but that shouldn’t mean that early career scientists are infantilized. They are, by and large, legal adults, and they ought to be striving to make decisions as adults — which means considering the potential effects of their actions and accepting the consequences of them. I’m disinclined, therefore, to view ORI judgments of scientific misconduct as akin to juvenile criminal records that are truly expunged to reflect the transient nature of the youthful offender’s transgressions. Scientists ought to have better judgment than fifteen-year-olds. Occasionally they don’t. If they want to stay a part of the scientific community that their bad choices may have harmed, they have to be prepared to make real restitution. This may include having to meet a higher burden of proof to make up for having misled one’s fellow scientists at some earlier point in time. It may be a pain, but it’s not impossible.

Indeed, I’m inclined to think that early career lapses in judgment ought not to be buried precisely because public knowledge of the problem gives the scientific community some responsibility for providing guidance to the promising young scientist who messed up. Acknowledging your mistakes sets up a context in which it may be easier to ask other folks for help in avoiding similar mistakes in the future. (Ideally, scientists would be able to ask each other for such advice as a matter of course, but there are plenty of instances where it feels like asking a question would be exposing a weakness — something that can feel very dangerous, especially to an early career scientist.)

Besides, there’s a practical difficulty in burying the pixel trail of a scientist’s misconduct. It’s almost always the case that other members of the scientific community are involved in alleging, detecting, investigating, or adjudicating. They know something is up. Keeping the official findings secret leaves the other concerned members of the scientific community hanging, unsure whether the ORI has done anything about the allegations (which can breed suspicion that scientists are getting away with misconduct left and right). It can also make the rumor mill seem preferable to a total lack of information on scientific colleagues prone to dishonesty toward other scientists.

Given the amount of information available online, it’s unlikely that scientists who have been caught in misconduct can fly completely under the radar. But even before the internet, there was no guarantee such a secret would stay secret. Searchable online information imposes a certain level of transparency. But if this is transparency following upon actions that deceived one’s scientific community, it might be the start of effective remediation. Admitting that you have broken trust may be the first real step in earning that trust back.

_____________
This post is an updated version of an ancestor post on my other blog.

Faith in rehabilitation (but not in official channels): how unethical behavior in science goes unreported.

Can a scientist who has behaved unethically be rehabilitated and reintegrated as a productive member of the scientific community? Or is your first ethical blunder grounds for permanent expulsion from the community?

In practice, this isn’t just a question about the person who commits the ethical violation. It’s also a question about what other scientists in the community can stomach in dealing with the offenders — especially when the offender turns out to be a close colleague or a trainee.

In the case of a hard line — one ethical strike and you’re out — what kind of decision does this place on the scientific mentor who discovers that his or her graduate student or postdoc has crossed an ethical line? Faced with someone you judge to have talent and promise, someone you think could contribute to the scientific endeavor, someone whose behavior you are convinced was the result of a moment of bad judgment rather than evil intent or an irredeemably flawed character, what do you do?

Do you hand the matter on to university administrators or federal funders (who don’t know your trainee, might not recognize or value his or her promise, might not be able to judge just how out of character this ethical misstep really was) and let them mete out punishment? Or, do you try to address the transgression yourself, as a mentor, addressing the actual circumstances of the ethical blunder, the other options your trainee should have recognized as better ones to pursue, and the kind of harm this bad decision could bring to the trainee and to other members of the scientific community?

Clearly, there are downsides to either of these options.

One problem with handling an ethical transgression privately is that it’s hard to be sure it has really been handled in a lasting way. Given the persistent patterns of escalating misbehavior that often come to light when big frauds are exposed, it’s hard not to wonder whether scientific mentors were aware, and perhaps even intervening in ways they hoped would be effective.

It’s the building over time of ethical violations that is concerning. Is such an escalation the result of a hands-off (and eyes-off) policy from mentors and collaborators? Could intervention earlier in the game have stopped the pattern of infractions and led the researcher to cultivate more honest patterns of scientific behavior? Or is being caught by a mentor or collaborator who admonishes you privately and warns that he or she will keep an eye on you almost as good as getting away with it — an outcome with no real penalties and no paper-trail that other members of the scientific community might access?

It’s even possible that some of these interventions might happen at an institutional level — the department or the university becomes aware of ethical violations and deals with them “internally” without involving “the authorities” (who, in such cases, are usually federal funding agencies). I dare say that the feds would be pretty unhappy about being kept out of the loop if the ethical violations in question occur in research supported by federal funding. But if the presumption is that getting the feds involved raises the available penalties to the draconian, it is understandable that departments and universities might want to try to address the ethical missteps while still protecting the investment they have made in a promising young researcher.

Of course, the rest of the scientific community has relevant interests here. These include an interest in being able to trust that other scientists present honest results to the community, whether in journal articles, conference presentations, grant applications, or private communications. Arguably, they also include an interest in having other members of the community expose dishonesty when they detect it. Managing an ethical infraction privately is problematic if it leaves the scientific community with misleading literature that isn’t corrected or retracted (for example).

It’s also problematic if it leaves someone with a habit of cheating in the community, presumed by all but a few of the community’s members to have a good record of integrity.

But I’m inclined to think that the impulse to deal with science’s youthful offenders privately is a response to the fear that handing them over to federal authorities has a high likelihood of ending their scientific careers forever. There is a fear that a first offense will be punished with the career equivalent of the death penalty.

As it happens, administrative sanctions imposed by Office of Research Integrity are hardly ever permanent removal. Findings of scientific misconduct are much more likely to be punished with exclusion from federal funding for three years, or five years, or ten years. Still, in an extremely competitive environment, with multitudes of scientists competing for scarce grant dollars and permanent jobs, even a three year disbarment may be enough to seriously derail a scientific career. The mentor making the call about whether to report a trainee’s unethical behavior may judge the likely fallout as enough to end the trainee’s career.

Permanent expulsion or a slap on the wrist is not much of a range of penalties. And, neither of these options really addresses the question of whether rehabilitation is possible and in the best interests of both the individual and the scientific community.

If no errors in judgment are tolerated, people will do anything to conceal such errors. Mentors who are trying to be humane may become accomplices in the concealment. The conversations about how to make better judgments may not happen because people worry that their hypothetical situations will be scrutinized for clues about actual screw-ups.

None of this is to say that ethical violations should be without serious consequences — they shouldn’t. But this need not preclude the possibility that people can learn from their mistakes. Violators may have to meet a heavy burden to demonstrate that they have learned from their mistakes. Indeed, it is possible they may never fully regain the trust of their fellow researchers (who may go forward reading their papers and grant proposals with heightened skepticism in light of their past wrongdoing).

However, it seems perverse for the scientific community to adopt a stance that rehabilitation is impossible when so many of its members seem motivated to avoid official channels for dealing with misconduct precisely because they feel rehabilitation is possible. If the official penalty structure denies the possibility of rehabilitation, those scientists who believe in rehabilitation will take matters into their own hands. To the extent that this may exacerbate the problem, it might be good if paths to rehabilitation were given more prominence in official responses to misconduct.

_____________
This post is an updated version of an ancestor post on my other blog.

Resistance to ethics instruction: considering the hypothesis that moral character is fixed.

This week I’ve been blogging about the resistance to required ethics coursework one sometimes sees in STEM* disciplines. As one reason for this resistance is the hunch that you can’t teach a person to be ethical once they’re past a certain (pre-college) age, my previous post noted that there’s a sizable body of research that supports ethics instruction as an intervention to help people behave more ethically.

But, as I mentioned in that post, the intuition that one’s moral character is fixed by one’s twenties can be so strong that folks don’t always believe what the empirical research says about the question.

So, as a thought experiment, let’s entertain the hypothesis that, by your twenties, your moral character is fixed — that you’re either ethical or evil by then and there’s nothing further ethics instruction can do about it. If this were the case, how would we expect scientists to respond to other scientists or scientific trainees who behave unethically?

Presumably, scientists would want the unethical members of the tribe of science identified and removed, permanently. Under the fixed-character hypothesis, the removal would have to be permanent, because there would be every reason to expect the person who behaved unethically to behave unethically again.

If we took this seriously, that would mean every college student who ever cheated on a quiz or made up data for a lab report should be barred from entry to the scientific community, and that every grown-up scientist caught committing scientific misconduct — or any ethical lapse, even those falling well short of fabrication, falsification, or plagiarism — would be excommunicated from the tribe of science forever.

That just doesn’t happen. Even Office of Research Integrity findings of scientific misconduct don’t typically lead to lifetime disbarment from federal research funding. Instead, they usually lead to administrative actions imposed for a finite duration, on the order of years, not decades.

And, I don’t think the failure to impose a policy of “one strike, you’re out” for those who behave unethically is because members of the tribe of science are being held back by some naïvely optimistic outside force (like the government, or the taxpaying public, or ethics professors). Nor is it because scientists believe it’s OK to lie, cheat, and steal in one’s scientific practice; there is general agreement that scientific misconduct damages the shared body of knowledge scientists are working to build.

When dealing with members of their community who have behaved unethically, scientists usually behave as if there is a meaningful difference between a first offense and a pattern of repeated offenses. This wouldn’t make sense if scientists were truly committed to the fixed-character hypothesis.

On the other hand, it fits pretty well with the hypothesis that people may be able to learn from their mistakes — to be rehabilitated rather than simply removed from the community.

There are surely some hard cases that the tribe of science view as utterly irredeemable, but graduate students or early career scientists whose unethical behavior is caught early are treated by many as probably redeemable.

How to successfully rehabilitate a scientist who has behaved unethically is a tricky question, and not one scientists seem inclined to speak about much. Actions by universities, funding agencies, or governmental entities like the Office of Research Integrity are part of the punishment landscape, but punishment is not the same thing as rehabilitation. Meanwhile, it’s unclear whether individual actions to address wrongdoing are effective at heading off future unethical behavior.

If it takes a village to raise a scientist, it may take concerted efforts at the level of scientific communities to rehabilitate scientists who have strayed from the path of ethical practice. We’ll discuss some of the challenges with that in the next post.

______
*STEM stands for science, technology, engineering, and mathematics.

Pub-Style Science: dreams of objectivity in a game built around power.

This is the third and final installment of my transcript of the Pub-Style Science discussion about how (if at all) philosophy can (or should) inform scientific knowledge-building. Leading up to this part of the conversation, we were considering the possibility that the idealization of the scientific method left out a lot of the details of how real humans actually interact to build scientific knowledge …

Dr. Isis: And that’s the tricky part, I think. That’s where this becomes a messy endeavor. You think about the parts of the scientific method, and you write the scientific method out, we teach it to our students, it’s on the little card, and I think it’s one of the most amazing constructs that there is. It’s certainly a philosophy.

I have devoted my career to the scientific method, and yet it’s that last step that is the messiest. We take our results and we interpret them, we either reject or fail to reject the hypothesis, and in a lot of cases, the way we interpret the very objective data that we’re getting is based on the social and cultural constructs of who we are. And the messier part is that the who we are — you say that science is done around the world, sure, but really, who is it done by? We all get the CV, “Dear honorable and most respected professor…” And what do you do with those emails? You spam them. But why? Why do we do that? There are people [doing science] around the world, and yet we reject their science-doing because of who they are and where they’re from and our understanding, our capacity to take [our doing] of that last step of the scientific method as superior because of some pedigree of our training, which is absolutely rooted in the narrowest sliver of our population.

And that’s the part that frightens me about science. Going from lab to lab and learning things, you’re not just learning objective skills, you’re learning a political process — who do you shake hands with at meetings, who do you have lunch with, who do you have drinks with, how do you phrase your grants in a particular way so they get funded because this is the very narrow sliver of people who are reading them? And I have no idea what to do about that.

Janet Stemwedel: I think this is a place where the acknowledgement that’s embodied in editorial policies of journals like PLOS ONE, that we can’t actually reliably predict what’s going to be important, is a good step forward. That’s saying, look, what we can do is talk about whether this is a result that seems to be robust: this is how I got it; I think if you try to get it in your lab, you’re likely to get it, too; this is why it looked interesting to me in light of what we knew already. Without saying: oh, and this is going to be the best thing since sliced bread. At least that’s acknowledging a certain level of epistemic humility that it’s useful for the scientific community to put out there, to no pretend that the scientific method lets you see into the future. Because last time I checked, it doesn’t.

(46:05)
Andrew Brandel: I just want to build on this point, that this question of objective truth also is a question that is debated hotly, obviously, in science, and I will get in much trouble for my vision of what is objective and what is not objective. This question of whether, to quote a famous philosopher of science, we’re all looking at the same world through different-colored glasses, or whether there’s something more to it, if we’re actually talking about nature in different ways, if we can really learn something not even from science being practiced wherever in the world, but from completely different systems of thinking about how the world works. Because the other part of this violence is not just the ways in which certain groups have not been included in the scientific community, the professional community, which was controlled by the church and wealthy estates and things, but also with the institutions like the scientific method, like certain kinds of philosophy. A lot of violence has been propagated in the name of those things. So I think it’s important to unpack not just this question of let’s get more voices to the table, but literally think about how the structures of what we’re doing themselves — the way the universities are set up, the way that we think about what science does, the way that we think about objective truth — also propagate certain kinds of violence, epistemic kinds of violence.

Michael Tomasson: Wait wait wait, this is fascinating. Epistemic violence? Expand on that.

Andrew Brandel: What I mean to say is, part of the problem, at least from the view of myself — I don’t want to actually represent anybody else — is that if we think that we’re getting to some better method of getting to objective truth, if we think that we have — even if it’s only in an ideal state — some sort of cornerstone, some sort of key to the reality of things as they are, then we can squash the other systems of thinking about the world. And that is also a kind of violence, in a way, that’s not just the violence of there’s no women at the table, there’s no different kinds of people at the table. But there’s actually another kind of power structure that’s embedded in the very way that we think about truths. So, for example, a famous anthropologist, Levi-Strauss, would always point out that the botanists would go to places in Latin America and they would identify 14 different kinds of XYZ plant, and the people living in that jungle who aren’t scientists or don’t have that kind of sophisticated knowledge could distinguish like 45 kinds of these plants. And they took them back to the lab, and they were completely right.

So what does that mean? How do we think about these different ways [of knowing]? I think unpacking that is a big thing that social science and philosophy of science can bring to this conversation, pointing out when there is a place to critique the ways in which science becomes like an ideology.

Michael Tomasson: That just sort of blew my mind. I have to process that for awhile. I want to pick up on something you’re saying and that I think Janet said before, which is really part of the spirit of what Pub-Style Science is all about, the idea that is we get more different kinds of voices into science, we’ll have a little bit better science at the other end of it.

Dr. Rubidium: Yeaaaah. We can all sit around like, I’ve got a ton of great ideas, and that’s fabulous, and new voices, and rah rah. But, where are the new voices? are the new voices, or what you would call new voices, or new opinions, or different opinions (maybe not even new, just different from the current power structure) — if those voices aren’t getting to positions of real power to affect change, it doesn’t matter how many foot soldiers you get on the ground. You have got to get people into the position of being generals. And is that happening? No. I would say no.

Janet Stemwedel: Having more different kinds of people at the table doesn’t matter if you don’t take them seriously.

Andrew Brandel: Exactly. That’s a key point.

Dr. Isis: This is the tricky thing that I sort of alluded to. And I’m not talking about diverse voices in terms of gender and racial and sexual orientation diversity and disability issues. I’m talking about just this idea of diverse voices. One of the things that is tricky, again, is that to get to play the game you have to know the rules, and trying to change the rules too early — one, I think it’s dangerous to try to change the rules before you understand what the rules even are, and two, that is the quickest way to get smacked in the nose when you’re very young. And now, to extend that to issues of actual diversity in science, at least my experience has been that some of the folks who are diverse in science are some of the biggest rule-obeyers. Because you have to be in order to survive. You can’t come in and be different as it is and decide you’re going to change the rules out from under everybody until you get into that — until you become a general, to use Dr. Rubidium’s analogy. The problem is, by the time you become the general, have you drunk enough of the Kool-Aid that you remember who you were? Do you still have enough of yourself to change the system? Some of my more senior colleagues, diverse colleagues, who came up the ranks, are some of the biggest believers in the rules. I don’t know if they felt that way when they were younger folks.

Janet Stemwedel: Part of it can be, if the rules work for you, there’s less incentive to think about changing them. But this is one of those places where those of us philosophers who think about where the knowledge-building bumps up against the ethics will say: look, the ethical responsibilities of the people in the community with more power are different that the ethical responsibilities of the people in the community who are just coming up, because they don’t have as much weight to throw around. They don’t have as much power. So I talk a lot to mid-career and late-career scientists and say, hey look, you want to help build a different community, a different environment for the people you’re training? You’ve got to put some skin in the game to make that happen. You’re in a relatively safe place to throw that weight around. You do that!

And you know, I try to make these prudential arguments about, if you shift around the incentive structures [in various ways], what’s likely to produce better knowledge on the other end? That’s presumably why scientists are doing science, ’cause otherwise there’d be some job that they’d be doing that takes up less time and less brain.

Andrew Brandel: This is a question also of where ethics and epistemic issues also come together, because I think that’s really part of what kind of radical politics — there’s a lot of different theories about what kind of revolution you can talk about, what a revolutionary politics might be to overthrow the system in science. But I think this issue that it’s also an epistemic thing, that it’s also a question of producing better knowledge, and that, to bring back this point about how it’s not just about putting people in positions, it’s not just hiring an assistant professor from XYZ country or more women or these kinds of things, but it’s also a question of putting oneself sufficiently at risk, and taking seriously the possibility that I’m wrong, from radically different positions. That would really move things, I think, in a more interesting direction. That’s maybe something we can bring to the table.

Janet Stemwedel: This is the piece of Karl Popper, by the way, that scientists like as an image of what kind of tough people they are. Scientists are not trying to prove their hypotheses, they’re trying to falsify them, they’re trying to show that they’re wrong, and they’re ready to kiss even their favorite hypothesis goodbye if that’s what the evidence shows.

Some of those hypotheses that scientists need to be willing to kiss goodbye have to do with narrow views of what kind of details count as fair game for building real reliable knowledge about the world and what kind of people and what kind of training could do that, too. Scientists really have to be more evidence-attentive around issues like their own implicit bias. And for some reason that’s really hard, because scientists think that individually they are way more objective than they average bear. The real challenge of science is recognizing that we are all average bears, and it is just the coordination of our efforts within this particular methodological structure that gets us something better than the individual average bear could get by him- or herself.

Michael Tomasson: I’m going to backpedal as furiously as I can, since we’re running out of time. So I’ll give my final spiel and then we’ll go around for closing comments.

I guess I will pare down my skeleton-key: I think there’s an idea of different ways of doing science, and there’s a lot of culture that comes with it that I think is very flexible. I think what I’m getting at is, is there some universal hub for whatever different ways people are looking at science? Is there some sort of universal skeleton or structure? And I guess, if I had to backpedal furiously, that I would say, what I would try to teach my folks, is number one, there is an objective world, it’s not just my opinion. When people come in and talk to me about their science and experiments, it’s not just about what I want, it’s not just about what I think, it’s that there is some objective world out there that we’re trying to describe. The second thing, the most stripped-down version of the scientific method I can think of, is that in order to understand that objective world, it helps to have a hypothesis, a preconceived notion, first to challenge.

What I get frustrated about, and this is just a very practical day-to-day thing, is I see people coming and doing experiments saying, “I have no preconceived notion of how this should go, I did this experiment, and here’s what I got.” It’s like, OK, that’s very hard to interpret unless you start from a certain place — here’s my prediction, here’s what I think was going on — and then test it.

Dr. Isis: I’ll say, Tomasson, actually this wasn’t as boring as I thought it would be. I was really worried about this one. I wasn’t really sure what we were supposed to be talking about — philosophy and science — but this one was OK. So, good on you.

But, I think that I will concur with you that science is about seeking objective truth. I think it’s a darned shame that humans are the ones doing the seeking.

Janet Stemwedel: You know, dolphin science would be completely different, though.

Dr. Rubidium: Yeah, dolphins are jerks! What are you talking about?

Janet Stemwedel: Exactly! All their journals would be behind paywalls.

Andrew Brandel: I’ll just say that I was saying to David, who I know is a regular member of your group, that I think it’s a good step in the right direction to have these conversations. I don’t think we get asked as social scientists, even those of us who work in science settings, to at least talk about these issues more, and talk about, what are the ethical and epistemic stakes involved in doing what we do? What can we bring to the table on similar kinds of questions? For me, this question of cultivating a kind of openness to being wrong is so central to thinking about the kind of science that I do. I think that these kinds of conversations are important, and we need to generate some kind of momentum. I jokingly said to Tomasson that we need a grant to pay for a workshop to get more people into these types of conversations, because I think it’s significant. It’s a step in the right direction.

Janet Stemwedel: I’m inclined to say one of the take-home messages here is that there’s a whole bunch of scientists and me, and none of you said, “Let’s not talk about philosophy at all, that’s not at all useful.” I would like some university administrators to pay attention to this. It’s possible that those of us in the philosophy department are actually contributing something that enhances not only the fortunes of philosophy majors but also the mindfulness of scientists about what they’re doing.

I’m pretty committed to the idea that there is some common core to what scientists across disciplines and across cultures are doing to build knowledge. I think the jury’s still out on what precisely the right thing to say about that common core of the scientific method is. But, I think there’s something useful in being able to step back and examine that question, rather than saying, “Science is whatever the hell we do in my lab. And as long as I keep doing all my future knowledge-building on the same pattern, nothing could go wrong.”

Dr. Rubidium: I think that for me, I’ll echo Isis’s comments: science is an endeavor done by people. And people are jerks — No! With people, then, if you have this endeavor, this job, whatever you want to call it — some people would call it a calling — once people are involved, I think it’s essential that we talk about philosophy, sociology, the behavior of people. They are doing the work. It doesn’t make sense to me, then — and I’m an analytical chemist and I have zero background in all of the social stuff — it doesn’t make sense to me that you would have this thing done by people and then actually say with a straight face, “But let’s not talk about people.” That part just doesn’t compute. So I think these conversations definitely need to continue, and I hope that we can talk more about the people behind the endeavor and more about the things attached to their thoughts and behaviors.

* * * * *

Part 1 of the transcript.

Part 2 of the transcript.

Archived video of this Pub-Style Science episode.

Storify’d version of the simultaneous Twitter conversation.

You should also check out Dr. Isis’s post on why the conversations that happen in Pub-Style Science are valuable to scientists-in-training.

Pub-Style Science: exclusion, inclusion, and methodological disputes.

This is the second part of my transcript of the Pub-Style Science discussion about how (if at all) philosophy can (or should) inform scientific knowledge-building, wherein we discuss methodological disputes, who gets included or excluded in scientific knowledge-building, and ways the exclusion or inclusion might matter. Also, we talk about power gradients and make the scary suggestion that “the scientific method” might be a lie…

Michael Tomasson: Rubidium, you got me started on this. I made a comment on Twitter about our aspirations to build objective knowledge and that that was what science was about, and whether there’s sexism or racism or whatever other -isms around is peripheral to the holy of holies, which is the finding of objective truth. And you made … a comment.

Dr. Rubidium: I think I told you that was cute.

Michael Tomasson: Let me leverage it this way: One reason I think philosophy is important is the basics of structure, of hypothesis-driven research. The other thing I’m kind of intrigued by is part of Twitter culture and what we’re doing with Pub-Style Science is to throw the doors open to people from different cultures and different backgrounds are really say, hey, we want to have science that’s not just a white bread monoculture, but have it be a little more open. But does that mean that everyone can bring their own way of doing science? It sounds like Andrew might say, well, there’s a lot of different ways, and maybe everyone who shows up can bring their own. Maybe one person wants a hypothesis, another doesn’t. Does everybody get to do their own thing, or do we need to educate people in the one way to do science?

As I mentioned on my blog, I had never known that there was a feminist way of doing science.

Janet Stemwedel: There’s actually more than one.

Dr. Isis: We’re not all the same.

Janet Stemwedel: I think even the claim that there’s a single, easily described scientific method is kind of a tricky one. One of the things I’m interested in — one of the things that sucked me over from building knowledge in chemistry to trying to build knowledge in philosophy — is, if you look at scientific practice, scientists who are nominally studying the same thing, the same phenomena, but who’re doing it in different disciplines (say, the chemical physicists and the physical chemists) can be looking at the same thing, but they’re using very different experimental tools and conceptual tools and methodological tools to try to describe what’s going on there. There’s ways in which, when you cross a disciplinary boundary — and sometimes, when you leave your research group and go to another research group in the same department — that what you see on the ground as the method you’re using to build knowledge shifts.

In some ways, I’m inclined to say it’s an empirical question whether there’s a single unified scientific method, or whether we’ve got something more like a family resemblance kind of thing going on. There’s enough overlap in the tools that we’re going to call them all science, but whether we can give necessary and sufficient conditions that describe the whole thing, that’s still up in the air.

Andrew Brandel: I just want to add to that point, if I can. I think that one of the major topics in social sciences of science and in the philosophy of science recently has been the point that science itself, as it’s been practiced, has a history that is also built on certain kinds of power structures. So it’s not even enough to say, let’s bring lots of different kinds of people to the table, but we actually have to uncover the ways in which certain power structures have been built into the very way that we think about science or the way that the disciplines are arranged.

(23:10)
Michael Tomasson: You’ve got to expand on that. What do you mean? There’s only one good — there’s good science and there’s bad science. I don’t understand.

Janet Stemwedel: So wait, everyone who does science like you do is doing good science, and everyone who uses different approaches, that’s bad?

Michael Tomasson: Yes, exactly.

Janet Stemwedel: There’s no style choices in there at all?

Michael Tomasson: That’s what I’m throwing out there. I’m trying to explore that. I’m going to take poor Casey over here, we’re going to stamp him, turn him into a white guy in a tie and he’s going to do science the way God intended it.

Dr. Isis: This is actually a good point, though. I had a conversation with a friend recently about “Cosmos.” As they look back on the show, at all the historical scientists, who, historically has done science? Up until very recently, it has been people who were sufficiently wealthy to support the lifestyle to which they would like to become accustomed, and it’s very easy to sit and think and philosophize about how we do science when it’s not your primary livelihood. It was sort of gentleman scientists who were of the independently wealthy variety who were interested in science and were making these observations, and now that’s very much changed.

It was really interesting to me when you suggested this as a topic because recently I’ve become very pragmatic about doing science. I think I’m taking the “Friday” approach to science — you know, the movie? Danielle Lee wants to remake “Friday” as a science movie. Right now, messing with my money is like messing with my emotions. I’m about writing things in a way to get them funded and writing things in a way that gets them published, and it’s cute to think that we might change the game or make it better, but there’s also a pragmatic side to it. It’s a human endeavor, and doing things in a certain way gets certain responses from your colleagues. The thing that I see, especially watching young people on Twitter, is they try to change the game before they understand the game, and then they get smacked on the nose, and then they write is off as “science is broken”. Well, you don’t understand the game yet.

Janet Stemwedel: Although it’s complicated, I’d say. It is a human endeavor. Forgetting it’s a human endeavor is a road to nothing but pain. And you’ve got the knowledge-building thing going on, and that’s certainly at the center of science, but you’ve also got the getting credit for the awesome things you’ve done and getting paid so you can stay in the pool and keep building knowledge, because we haven’t got this utopian science island where anyone who wants to build knowledge can and all their needs are taken care of. And, you’ve got power gradients. So, there may well be principled arguments from the point of view of what’s going to incentivize practices that will result in better knowledge and less cheating and things like that, to change the game. I’d argue that’s one of the things that philosophy of science can contribute — I’ve tried to contribute that as part of my day job. But the first step is, you’ve got to start talking about the knowledge-building as an activity that’s conducted by humans rather than you put more data into the scientific method box, you turn the crank, and out comes the knowledge.

Michael Tomasson: This is horrifying. I guess what I’m concerned about is I’d hoped you’d teach the scientific method as some sort of central methodology from lab to lab. Are you saying, from the student’s point of view, whatever lab you’re in, you’ve got to figure out whatever the boss wants, and that’s what science is? Is there no skeleton key or structure that we can take from lab to lab?

Dr. Rubidium: Isn’t that what you’re doing? You’re going to instruct your people to do science the way you think it should be done? That pretty much sounds like what you just said.

Dr. Isis: That’s the point of being an apprentice, right?

Michael Tomasson: I had some fantasy that there was some universal currency or universal toolset that could be taken from one lab to another. Are you saying that I’m just teaching my people how to do Tomasson science, and they’re going to go over to Rubidium and be like, forget all that, and do things totally differently?

Dr. Rubidium: That might be the case.

Janet Stemwedel: Let’s put out there that a unified scientific method that’s accepted across scientific disciplines, and from lab to lab and all that, is an ideal. We have this notion that part of why we’re engaged in science to try to build knowledge of the world is that there is a world that we share. We’re trying to build objective knowledge, and why that matters is because we take it that there is a reality out there that goes deeper than how, subjectively, things seem to us.

(30:00)
Michael Tomasson: Yes!

Janet Stemwedel: So, we’re looking for a way to share that world, and the pictures of the method involved in doing that, the logical connections involved in doing that, that we got from the logical empiricists and Popper and that crowd — if you like, they’re giving sort of the idealized model of how we could do that. It’s analogous to the story they tell you about orbitals in intro chem. You know what happens, if you keep on going with chem, is they mess up that model. They say, it’s not that simple, it’s more complicated.

And that’s what philosophers of science do, is we mess up that model. We say, it can’t possible be that simple, because real human beings couldn’t drive that and make it work as well as it does. So there must be something more complicated going on; let’s figure out what it is. My impression, looking at the practice through the lens of philosophy of science, is that you find a lot of diversity in the details of the methods, you find a reasonable amount of diversity in terms of what’s the right attitude to have towards our theories — if we’ve got a lot of evidence in favor of our theories, are we allowed to believe our theories are probably right about the world, or just that they’re better at churning out predictions than the other theories we’ve considered so far? We have places where you can start to look at how methodologies embraced by Western primatologists compared to Japanese primatologists — where they differ on what’s the right thing to do to get the knowledge — you could say, it’s not the case that one side is right and one side is wrong, we’ve located a trade-off here, where one camp is deciding one of the things you could get is more important and you can sacrifice the other, and the other camp is going the other direction on that.

It’s not to say we should just give up on this project of science and building objective, reliable knowledge about the world. But how we do that is not really anything like the flowchart of the scientific method that you find in the junior high science text book. That’s like staying with the intro chem picture of the orbitals and saying, that’s all I need to know.

(32:20)
Dr. Isis: I sort of was having a little frightened moment where, as I was listening to you talk, Michael, I was having this “I don’t think that word means what you think it means” reaction. And I realize that you’re a physician and not a real scientist, but “the scientific method” is actually a narrow construct of generating a hypothesis, generating methods to test the hypothesis, generating results, and then either rejecting or failing to reject your hypothesis. This idea of going to people’s labs and learning to do science is completely tangential from the scientific method. I think we can all agree that, for most of us at are core, the scientific method is different from the culture. Now, whether I go to Tomasson’s lab and learn to label my reagents with the wrong labels because they’re a trifling, scandalous bunch who will mess up your experiment, and then I go to Rubidium’s lab and we all go marathon training at 3 o’clock in the afternoon, that’s the culture of science, that’s not the scientific method.

(34:05)
Janet Stemwedel: Maybe what we mean by the scientific method is either more nebulous or more complicated, and that’s where the disagreements come from.

If I can turn back to the example of the Japanese primatologists and the primatologists from the U.S. [1]… You’re trying to study monkeys. You want to see how they’re behaving, you want to tell some sort of story, you probably are driven by some sort of hypotheses. As it turns out, the Western primatologists are starting with the hypothesis that basically you start at the level of the individual monkey, that this is a biological machine, and you figure out how that works, and how they interact with each other if you put them in a group. The Japanese primatologists are starting out with the assumption that you look at the level of social groups to understand what’s going on.

(35:20)
And there’s this huge methodological disagreement that they had when they started actually paying attention to each other: is it OK to leave food in the clearing to draw the monkeys to where you can see them more closely?

The Western primatologists said, hell no, that interferes with the system you’re trying to study. You want to know what the monkeys would be like in nature, without you there. So, leaving food out there for them, “provisioning” them, is a bad call.

The Japanese primatologists (who are, by the way, studying monkeys that live in the islands that are part of Japan, monkeys that are well aware of the existence of humans because they’re bumping up against them all the time) say, you know what, if we get them closer to where we are, if we draw them into the clearings, we can see more subtle behaviors, we can actually get more information.

So here, there’s a methodological trade-off. Is it important to you to get more detailed observations, or to get observations that are untainted by human interference? ‘Cause you can’t get both. They’re both using the scientific method, but they’re making different choices about the kind of knowledge they’re building with that scientific method. Yet, on the surface of things, these primatologists were sort of looking at each other like, “Those guys don’t know how to do science! What the hell?”

(36:40)
Andrew Brandel: The other thing I wanted to mention to this point and, I think, to Tomasson’s question also, is that there are lots of anthropologists embedded with laboratory scientists all over the world, doing research into specifically what kinds of differences, both in the ways that they’re organized and in the ways that arguments get levied, what counts as “true” or “false,” what counts as a hypothesis, how that gets determined within these different contexts. There are broad fields of social sciences doing exactly this.

Dr. Rubidium: I think this gets to the issue: Tomasson, what are you calling the scientific method? Versus, can you really at some point separate out the idea that science is a thing — like Janet was saying, it’s a machine, you put the stuff in, give it a spin, and get the stuff out — can you really separate something called “the scientific method” from the people who do it?

I’ve taught general chemistry, and one of the first things we do is to define science, which is always exciting. It’s like trying to define art.

Michael Tomasson: So what do you come up with? What is science?

Dr. Rubidium: It’s a body of knowledge and a process — it’s two different things, when people say science. We always tell students, it’s a body of knowledge but it’s also a process, a thing you can do. I’m not saying it’s [the only] good answer, but it’s the answer we give students in class.

Then, of course, the idea is, what’s the scientific method? And everyone’s got some sort of a figure. In the gen chem book, in chapter 1, it’s always going to be in there. And it makes it seem like we’ve all agreed at some point, maybe taken a vote, I don’t know, that this is what we do.

Janet Stemwedel: And you get the laminated card with the steps on it when you get your lab coat.

Dr. Rubidium: And there’s the flowchart, usually laid out like a circle.

Michael Tomasson: Exactly!

Dr. Rubidium: It’s awesome! But that’s what we tell people. It’s kind of like the lie we tell the about orbitals, like Janet was saying, in the beginning of gen chem. But then, this is how sausages are really made. And yes, we have this method, and these are the steps we say are involved with it, but are we talking about that, which is what you learn in high school or junior high or science camp or whatever, or are you actually talking about how you run your research group? Which one are you talking about?

(39:30)
Janet Stemwedel: It can get more complicated than that. There’s also this question of: is the scientific method — whatever the heck we do to build reliable knowledge about the world using science — is that the kind of thing you could do solo, or is it necessarily a process that involves interaction with other people? So, maybe we don’t need to be up at night worrying about whether individual scientists fail to instantiate this idealized scientific method as long as the whole community collectively shakes out as instantiating it.

Michael Tomasson: Hmmm.

Casey: Isn’t this part of what a lot of scientists are doing, that it shakes out some of the human problems that come with it? It’s a messy process and you have a globe full of people performing experiments, doing research. That should, to some extent, push out some noise. We have made advances. Science works to some degree.

Janet Stemwedel: It mostly keeps the plane up in the air when it’s supposed to be in the air, and the water from being poisoned when it’s not supposed to be poisoned. The science does a pretty good job building the knowledge. I can’t always explain why it’s so good at that, but I believe that it does. And I think you’re right, there’s something — certainly in peer review, there’s this assumption that why we play with others here is that they help us catch the thing we’re missing, they help us to make sure the experiments really are reproducible, to make sure that we’re not smuggling in unconscious assumptions, whatever. I would argue, following on something Tomasson wrote in his blog post, that this is a good epistemic reason for some of the stuff that scientists rail on about on Twitter, about how we should try to get rid of sexism and racism and ableism and other kinds of -isms in the practice of science. It’s not just because scientists shouldn’t be jerks to people who could be helping them build the knowledge. It’s that, if you’ve got a more diverse community of people building the knowledge, you up the chances that you’re going to locate the unconscious biases that are sneaking in to the story we tell about what the world is like.

When the transcript continues, we do some more musing about methodology, the frailties of individual humans when it comes to being objective, and epistemic violence.

_______

[1] This discussion based on my reading of Pamela J. Asquith, “Japanese science and western hegemonies: primatology and the limits set to questions.” Naked science: Anthropological inquiry into boundaries, power, and knowledge (1996): 239-258.

* * * * *

Part 1 of the transcript.

Archived video of this Pub-Style Science episode.

Storify’d version of the simultaneous Twitter conversation.