Holy mole-y, it’s National Chemistry Week!

Your humble blogger is swamped with work, but National Chemistry Week (October 17-23) waits for no overworked academic. So, let me offer a nugget from deep in the archives about why I dig chemistry.

What’s so great about chemistry? Of course, if you’re a kid, chemistry has the allure of magic — something might explode! (For those averse to permanent damage, there are plenty of cool chemistry activities that are much safer than whatever my brother did with his store-bought chemistry set to scorch the hell out of our parents’ card table.) But I suspect its real charm for students, at least when it’s taught right, is that it’s a science that looks for the “whys” pretty early in the game. In general, introductory chemistry doesn’t involve much memorization (whether of equations, as in physics, or of Linnaean taxonomy, cell organelles, phases of mitosis, or any of the other important details one has to remember in a biology class). Rather, you learn how to use the Periodic Table almost like a decoder ring to figure out why various substances behave the way they do. From the very beginning, the chemistry student is thinking not just in terms of facts, but in terms of rationalizing those facts. For every weird exception you learn to a regular pattern, the challenge is to understand why it breaks the pattern.

In this chemical universe the student enters, things start to make sense in a way that everyday life hardly ever does. It can be downright seductive. But of course, the orderly chemical universe to which the student is exposed is the product of much labor in laboratories. What happens in the labs can seem chaotic rather than orderly, and sometimes it is only the determination of the chemists to find the underlying order that keeps the going back to the bench to tame the chaos. Needless to say, finding the order in chaos can be seductive, too.

While chemistry often gets props for being a practical subject to pursue (where “practical” usually means leading to gainful employment, and the contrast class is something like philosophy), a lot of the people I know who went into chemistry were led by their hearts more than their heads. Chemistry just felt like the right way to engage with the world.

Primo Levi expressed this as well as anyone else has. Writing about his experiences as a chemistry student in Italy during the rise of Fascism on the eve of World War II, he said he felt

That the nobility of Man, acquired in a hundred centuries of trial and error, lay in making himself the conquerer of matter, and that I had enrolled in chemistry because I wanted to maintain faithful to that nobility. That conquering matter is to understand it, and understanding matter is necessary to understanding the universe and ourselves: and that therefore Mendeleev’s Periodic Table, which just during those weeks we were laboriously learning to unravel, was poetry, loftier and more solemn than all the poetry we had swallowed doen in liceo; and come to think of it, it even rhymed! …

[T]he chemistry and physics on which we fed, besides being in themselves nourishments vital in themselves, were the antidotes to Fascism … because they were clear and distinct and verifiable at every step, and not a tissue of lies and emptiness like the radio and newspapers

(The Periodic Table, pp. 45-46.)

Why does it choke me up to see Levi want to conquer matter by understanding it, or to see that his motivation to understand matter is a desire to understand the universe and himself? Coming at a science like this, you can see why a couple centuries ago it was called natural philosophy. As nuts and bolts as the work of a chemist can be — and Levi was for most of his career a chemist who took on problems in different industrial labs, including an IG-Farben lab while he was a prisoner at Auschwitz — the drive here is to understand the substance of reality, to get at knowledge we can be sure of and can hold in common with others. Wanting something like this — to understand of the universe we’re in and how we fit into it, to share our experience with our fellow human beings — feels like the most human of impulses. Science is not the show-offy acting out of the maladjusted braniac, but the labor of the human spirit.

Maybe if more of that got across to science students, and to the public at large, cultivating scientific literacy wouldn’t seem so much like taking a dose of castor oil.

facebooktwittergoogle_pluslinkedinmail
Posted in Chemistry, Kids and science, Teaching and learning.

One Comment

Leave a Reply

Your email address will not be published. Required fields are marked *