Today the Chronicle of Higher Education has an article that bears on the allegation of shenanigans in the research lab of Marc D. Hauser. As the article draws heavily on documents given to the Chronicle by anonymous sources, rather than on official documents from Harvard’s inquiry into allegations of misconduct in the Hauser lab, we are going to take them with a large grain of salt. However, I think the Chronicle story raises some interesting questions about the intersection of scientific methodology and ethics.
Category Archives: Current events
What kind of problem is it when data do not support findings?
And, whose problem is it?
Yesterday, The Boston Globe published an article about Harvard University psychologist Marc Hauser, a researcher embarking on a leave from his appointment in the wake of a retraction and a finding of scientific misconduct in his lab. From the article:
In a letter Hauser wrote this year to some Harvard colleagues, he described the inquiry as painful. The letter, which was shown to the Globe, said that his lab has been under investigation for three years by a Harvard committee, and that evidence of misconduct was found. He alluded to unspecified mistakes and oversights that he had made, and said he will be on leave for the upcoming academic year. …
Much remains unclear, including why the investigation took so long, the specifics of the misconduct, and whether Hauser’s leave is a punishment for his actions.
The retraction, submitted by Hauser and two co-authors, is to be published in a future issue of Cognition, according to the editor. It says that, “An internal examination at Harvard University . . . found that the data do not support the reported findings. We therefore are retracting this article.’’
The paper tested cotton-top tamarin monkeys’ ability to learn generalized patterns, an ability that human infants had been found to have, and that may be critical for learning language. The paper found that the monkeys were able to learn patterns, suggesting that this was not the critical cognitive building block that explains humans’ ability to learn language. In doing such experiments, researchers videotape the animals to analyze each trial and provide a record of their raw data. …
The editor of Cognition, Gerry Altmann, said in an interview that he had not been told what specific errors had been made in the paper, which is unusual. “Generally when a manuscript is withdrawn, in my experience at any rate, we know a little more background than is actually published in the retraction,’’ he said. “The data not supporting the findings is ambiguous.’’
Gary Marcus, a psychology professor at New York University and one of the co-authors of the paper, said he drafted the introduction and conclusions of the paper, based on data that Hauser collected and analyzed.
“Professor Hauser alerted me that he was concerned about the nature of the data, and suggested that there were problems with the videotape record of the study,’’ Marcus wrote in an e-mail. “I never actually saw the raw data, just his summaries, so I can’t speak to the exact nature of what went wrong.’’
The investigation also raised questions about two other papers co-authored by Hauser. The journal Proceedings of the Royal Society B published a correction last month to a 2007 study. The correction, published after the British journal was notified of the Harvard investigation, said video records and field notes of one of the co-authors were incomplete. Hauser and a colleague redid the three main experiments and the new findings were the same as in the original paper. …“This retraction creates a quandary for those of us in the field about whether other results are to be trusted as well, especially since there are other papers currently being reconsidered by other journals as well,’’ Michael Tomasello, co-director of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, said in an e-mail. “If scientists can’t trust published papers, the whole process breaks down.’’ …
In 1995, he [Hauser] was the lead author of a paper in the Proceedings of the National Academy of Sciences that looked at whether cotton-top tamarins are able to recognize themselves in a mirror. Self-recognition was something that set humans and other primates, such as chimpanzees and orangutans, apart from other animals, and no one had shown that monkeys had this ability.
Gordon G. Gallup Jr., a professor of psychology at State University of New York at Albany, questioned the results and requested videotapes that Hauser had made of the experiment.
“When I played the videotapes, there was not a thread of compelling evidence — scientific or otherwise — that any of the tamarins had learned to correctly decipher mirrored information about themselves,’’ Gallup said in an interview.
A quick rundown of what we get from this article:
- Someone raised a concern about scientific misconduct that led to the Harvard inquiry, which in turn led to the discovery of “evidence of misconduct” in Hauser’s lab.
- We don’t, however, have an identification of what kind of misconduct is suggested by the evidence (fabrication? falsification? plagiarism? other serious deviations from accepted practices?) or of who exactly committed it (Hauser or one of the other people in his lab).
- At least one paper has been retracted because “the data do not support the reported findings”.
- However, we don’t know the precise issue with the data here — e.g., whether the reported findings were bolstered by reported data that turned out to be fabricated or falsified (and are thus not being included anymore in “the data”).
- Apparently, the editor of the journal that published the retracted paper doesn’t know the precise issue with the data, either, and found this unusual enough a situation with respect to the retraction of the paper to merit comment.
- Other papers from the Hauser group may be under investigation for similar reasons at this point, and other researchers in the field seem to be nervous about those papers and their reliability in light of the ongoing inquiry and the retraction of the paper in Cognition.
There’s already been lots of good commentary on what might be going on with the Hauser case. (I say “might” because there are many facts still not in evidence to those of us not actually on the Harvard inquiry panel. As such, I think it’s necessary to refrain from drawing conclusions not supported by the facts that are in evidence.)
John Hawks situates the Hauser case in terms of the problem of subjective data.
Melody has a nice discussion of the political context of getting research submitted to journals, approved by peer reviewers, and anointed as knowledge.
David Dobbs wonders whether the effects of the Hauser case (and of the publicity it’s getting) will mean backing off from overly strong conclusions drawn from subjective data, or backing off too far from a “hot” scientific field that may still have a bead on some important phenomena in our world.
Drugmonkey critiques the Boston Globe reporting and reminds us that failure to replicate a finding is not evidence of scientific misconduct or fraud. That’s a hugely important point, and one that bears repeating. Repeatedly.
This is the kind of territory where we start to notice common misunderstandings about how science works. It’s usually not the case that we can cut nature at the joints along nicely dotted lines that indicate just where those cuts should be. Collecting reliable data and objectively interpreting that data is hard work. Sometimes as we go, we learn more about better conditions for collecting reliable data, or better procedures for interpreting the data without letting our cognitive biases do the driving. And sometimes, a data set we took to be reliable and representative of the phenomenon we’re trying to understand just isn’t.
That’s part of why scientific conclusions are always tentative. Scientists expect to update their current conclusions in the light of new results down the road — and in the light of our awareness that some of our old results just weren’t as solid or reproducible as we took them to be. It’s good to be sure they’re reproducible enough before you announce a finding to your scientific peers, but to be absolutely certain of total reproducibility, you have to solve the problem of induction, which isn’t terribly practical.
Honest scientific work can lead to incorrect conclusions, either because that honest work yielded wonk data from which to draw conclusions, or because good data can still be consistent with incorrect conclusions.
And, there’s a similar kind of disconnect we should watch out for. For the “corrected” 2007 paper in Proceedings of the Royal Society B, the Boston Globe article reports that videotapes and field notes (the sources of the data to support the reported conclusions) were “incomplete”. But, Hauser and a colleague redid the experiments and found data that supported the conclusions reported in this paper. One might think that as long as reported results are reproducible, they’re necessarily sufficiently ethical and scientifically sound and all that good stuff. That’s not how scientific knowledge-building works. The rules of the game are that you lay your data-cards on the table and base your findings on those data. Chancing upon an answer that turns out to be right but isn’t supported by the data you actually have doesn’t count, nor does having a really strong hunch that turns out to be right. In the scientific realm, empirical data is our basis for knowing what we know about the phenomena. Thus, doing the experiments over in the face of insufficient data is not “playing it safe” so much as “doing the job you were supposed to have done in the first place”.
Now, given the relative paucity of facts in this particular case, I find myself interested by a more general question: What are the ethical duties of a PI who discovers that he has published a paper whose findings are not, in fact, supported by the data?.
It seems reasonable that at least one of his or her duties involves correcting the scientific literature.
This could involve retracting the paper, in essence saying, “Actually, we can’t conclude this based on the data we have. Our bad!”
It could also involve correcting the paper, saying, “We couldn’t conclude this based on the data we have; instead, we should conclude this other thing,” or, “We couldn’t conclude this based on the data we originally reported, but we’ve gone and done more experiments (or have repeated the experiments we described), obtained this data, and are now confident that on the basis of these data, the conclusion in well-supported.”
If faulty data were reported, I would think that the retraction or correction should probably explain how the data were faulty — what’s wrong with them? If the problem had its source in an honest mistake, it might also be valuable to identify that honest mistake so other researchers could avoid it themselves. (Surely this would be a kindness; is it also a duty?)
Beyond correcting the scientific literature, does the PI in this situation have other relevant duties?
Would these involve ratcheting up the scrutiny of data within the lab group in advance of future papers submitted for publication? Taking the skepticism of other researchers in the field more seriously and working that much harder to build a compelling case for conclusions from the data? (Or, perhaps, working hard to identify the ways that the data might argue against the expected conclusion?) Making serious efforts to eliminate as much subjectivity from the data as possible?
Assuming the PI hasn’t fabricated or falsified the data (and that if someone in the lab group has, that person has been benched, at least for the foreseeable future), what kind of steps ought that PI to take to make things right — not just for the particular problematic paper(s), but for his or her whole research group moving forward and interacting with other researchers in the field? How can they earn back trust?
Science prerequisites for medical school: (uh!) what are they good for?
Last week, in response to a New York Times article about a medical school with a program to admit students who have not taken physics, organic chemistry, or the MCAT, Chad Orzel expressed some qualms:
On the one hand, I tend to think that anyone who is going to be allowed to prescribe drugs ought to know enough organic chemistry to have some idea how they work. On the other hand, though, I would shed no tears if the pre-med physics class disappeared entirely– most of the students resent having to take physics, and I’m not wild about being used as a weed-out course for somebody else’s major program, which is a combination that easily turns into a thoroughly miserable experience for everyone. …
Still, I’m a little uneasy about people getting to be doctors without taking science in college at all … I suspect Mount Sinai has good results from this program because it’s just about the only one going, and they get their pick of the very best students, who are able to pick up what they need from “summer boot camp.” I’m less comfortable with the idea of making this a general policy– a lot of the students I see struggling in pre-med physics are struggling because of things that would not be positive features in a doctor.
Nowadays, in my capacity as a philosophy professor, I’m actually teaching more chemistry and physics and biology majors, and fewer pre-meds, than I did back in the days when I was a chemistry graduate student. If I recall correctly, all but one of the undergraduate courses for which I was a teaching assistant in my chemistry program were part of the pre-med sequence, including not only first term organic chemistry and the qualitative analysis laboratory course, but also physical chemistry for pre-meds.
I think it’s safe to say that the pre-meds were not always enthusiastic about the material we were trying to teach them.
Indeed, “What am I ever going to use this for?” was an oft heard question in those courses:
“When am I ever going to need to balance a redox reaction when I’m performing brain surgery?”
“How is knowing the difference between SN1 and SN2 reactions going to help me deliver babies?”
“What the hell does understanding how a refrigerator works have to do with orthopedics?”
I’m not that kind of doctor (nor do I play one on TV), so I’d probably refer these questions to people like PalMD or Orac or Pascale. (I will note that I recognized some nice chemical content in Pascale’s post on salt and bloat, so I’m guessing that she wouldn’t be writing any pre-meds a doctor’s note to excuse them from chemistry altogether.)
The course prerequisites for medical school, however, have been set by the medical schools. One would hope that they have some good reason for setting them — whether because they impart information and skills directly applicable in the work of being a physician, or because they impart information and skills that will be assumed in the coursework to be completed in medical school, or because they expose students to patterns of thought and problem-solving strategies that are expected to be useful to them in tackling the medical problems they will be tasked to address.
It’s also possible, I suppose, that medical schools have selected the slate of courses required for admission in order to thin out the numbers of applicants that they will have to sift through to build a class. If that’s the case, though, one wonders why they would choose just the hard-enough-to-get-rid-of-the-chaff courses that they did. Why Newtonian physics and not quantum mechanics (or hell, even E&M)? Why organic chemistry or “baby P-chem” rather than the thermodynamics course the chemistry majors have to take (followed by the quantum chemistry course those chemistry majors need to take)?
If you really want to weed them out, why not a serious first order logic course?
I, personally, think the whole philosophy of the “weeder” course is problematic. Moreover, I suspect that setting up intro science courses to “weed out” some large proportion of the students taking them from moving on to the next course in sequence (or to the professional program for which these courses are prerequisites) probably does as much to undermine students’ understanding of the course material, or enthusiasm to engage with it, as the objective difficulty of the material itself.
Maybe if medical schools have more people interested in applying to them than they know how to handle, they should do their own dirty work as far as screening applicants goes. The alternative is to create legions of physics and chemistry professors who would be just as happy not to have to deal with premeds at all.
Myself, I feel more comfortable with a doctor whose brain is hungry for knowledge, someone who wants to learn not only because it means picking up useful information about our world and how it works, but also because it’s fun. I have no idea if this kind of attitude tends to lead to better physicians or more successful medical students, but my hunch is that it may lead to human beings who are better prepared for life in the fullest sense.
That seems like an important thing even for premeds.
College kids and their plagiarism (or college professors and their quaint insistence on proper citation of sources).
Today, The New York Times has an article about students and plagiarism that I could have sworn I’ve read at least a dozen times before, at least in its general gist.
As an exercise, before you click through to read the article, grab some paper and a pencil and jot down two or three reasons you think will be offered that the current generation of college students does not grasp the wrongness of using the words and ideas of others without attribution.
Is your list ready?
Continue reading
Paid sick leave and ethics.
I saw a story in the San Jose Mercury News that I thought raised an interesting question about sick leave, one worth discussing here.
As it turns out, all the details of the specific case reported in the article sort of obscure the general question that it initially raised for me. But since I’m still interested in discussing the more general problem, here’s a poll to tweak your intuitions.
In cash-strapped community college system, an administrator collecting paid sick leave is …online survey
Am I asking too little of the First Amendment?
I noticed a short item today at Inside Higher Education about Mike Adams, an associate professor of of criminal justice at the University of North Carolina at Wilmington , who is suing the university on the grounds that his promotion to full professor was denied due to his conservative Christian views. (Apparently, this legal action has been underway since 2007.)
I know very few details of the case, so I’m in no position to opine about whether Adams should or should not have been promoted. But there’s one element of the case that seems to be legally interesting:
In search of accepted practices: the final report on the investigation of Michael Mann (part 3).
Here we continue our examination of the final report (PDF) of the Investigatory Committee at Penn State University charged with investigating an allegation of scientific misconduct against Dr. Michael E. Mann made in the wake of the ClimateGate media storm. The specific question before the Investigatory Committee was:
“Did Dr. Michael Mann engage in, or participate in, directly or indirectly, any actions that seriously deviated from accepted practices within the academic community for proposing, conducting, or reporting research or other scholarly activities?”
In the last two posts, we considered the committee’s interviews with Dr. Mann and with Dr. William Easterling, the Dean of the College of Earth and Mineral Sciences at Penn State, and with three climate scientists from other institutions, none of whom had collaborated with Dr. Mann. In this post, we turn to the other sources of information to which the Investigatory Committee turned in its efforts to establish what counts as accepted practices within the academic community (and specifically within the community of climate scientists) for proposing, conducting, or reporting research.
In search of accepted practices: the final report on the investigation of Michael Mann (part 2).
When you’re investigating charges that a scientist has seriously deviated from accepted practices for proposing, conducting, or reporting research, how do you establish what the accepted practices are? In the wake of ClimateGate, this was the task facing the Investigatory Committee at Penn State University investigating the allegation (which the earlier Inquiry Committee deemed worthy of an investigation) that Dr. Michael E. Mann “engage[d] in, or participate[d] in, directly or indirectly, … actions that seriously deviated from accepted practices within the academic community for proposing, conducting, or reporting research or other scholarly activities”.
One strategy you might pursue is asking the members of a relevant scientific or academic community what practices they accept. In the last post, we looked at what the Investigatory Committee learned from its interviews about this question with Dr. Mann himself and with Dr. William Easterling, Dean, College of Earth and Mineral Sciences, The Pennsylvania State University. In this post, we turn to the committee’s interviews with three climate scientists from other institutions, none of whom had collaborated with Dr. Mann, and at least one of whom has been very vocal about his disagreements with Dr. Mann’s scientific conclusions.
In search of accepted practices: the final report on the investigation of Michael Mann (part 1).
Way back in early February, we discussed the findings of the misconduct inquiry against Michael Mann, an inquiry that Penn State University mounted in the wake of “numerous communications (emails, phone calls, and letters) accusing Dr. Michael E. Mann of having engaged in acts that included manipulating data, destroying records and colluding to hamper the progress of scientific discourse around the issue of global warming from approximately 1998″. Those numerous communications, of course, followed upon the well-publicized release of purloined email messages from the Climate Research Unit (CRU) webserver at the University of East Anglia — the storm of controversy known as ClimateGate.
You may recall that the misconduct inquiry, whose report (PDF) is here, looked into four allegations against Dr. Mann and found no credible evidence to support three of them. On the fourth allegation, the inquiry committee was unable to make a definitive finding. Here’s what I wrote about the inquiry committee’s report on this allegation:
[T]he inquiry committee is pointing out that researchers at the university has a duty not to commit fabrication, falsification, or plagiarism, but also a positive duty to behave in such a way that they maintain the public’s trust. The inquiry committee goes on to highlight specific sections of policy AD-47 that speak to cultivating intellectual honesty, being scrupulous in presentation of one’s data (and careful not to read those data as being more robust than they really are), showing due respect for their colleagues in the community of scholars even when they disagree with their findings or judgments, and being clear in their communications with the public about when they are speaking in their capacity as researchers and when they are speaking as private citizens. …
[W]e’re not just looking at scientific conduct here. Rather, we’re looking at scientific conduct in an area about which the public cares a lot.
What this means is that the public here is paying rather more attention to how climate scientists are interacting with each other, and to the question of whether these interactions are compatible with the objective, knowledge-building project science is supposed to be.
[T]he purloined emails introduce new data relevant to the question of whether Dr. Mann’s research activities and interactions with other scientists — both those with whose conclusions he agrees and those with whose conclusions he does not agree — are consistent with or deviate from accepted scientific practices.
Evaluating the data gleaned from the emails, in turns, raises the question of what the community of scholars and the community of research scientists agree counts as accepted scientific practices.Decision 4. Given that information emerged in the form of the emails purloined from CRU in November 2009, which have raised questions in the public’s mind about Dr. Mann’s conduct of his research activity, given that this may be undermining confidence in his findings as a scientist, and given that it may be undermining public trust in science in general and climate science specifically, the inquiry committee believes an investigatory committee of faculty peers from diverse fields should be constituted under RA-10 to further consider this allegation.
In sum, the overriding sentiment of this committee, which is composed of University administrators, is that allegation #4 revolves around the question of accepted faculty conduct surrounding scientific discourse and thus merits a review by a committee of faculty scientists. Only with such a review will the academic community and other interested parties likely feel that Penn State has discharged it responsibility on this matter.What this means is that the investigation of allegation #4 that will follow upon this inquiry will necessarily take up the broad issue of what counts as accepted scientific practices. This discussion, and the findings of the investigation committee that may flow from it, may have far reaching consequences for how the public understands what good scientific work looks like, and for how scientists themselves understand what good scientific work looks like.
Accordingly, an Investigatory Committee was constituted and charged to examine that fourth allegation, and its report (PDF) has just been released. We’re going to have a look at what the Investigatory Committee found, and at its strategies for getting the relevant facts here.
Since this report is 19 pages long (the report of the inquiry committee was just 10), I won’t be discussing all the minutiae of how the committee was constituted, nor will I be discussing this report’s five page recap of the earlier committee’s report (since I’ve already discussed that report at some length). Instead, I’ll be focusing on this committee’s charge:
The Investigatory Committee’s charge is to determine whether or not Dr. Michael Mann engaged in, or participated in, directly or indirectly, any actions that seriously deviated from accepted practices within the academic community for proposing, conducting, or reporting research or other scholarly activities.
and on the particular strategies the Investigatory Committee used to make this determination.
Indeed, establishing what might count as a serious deviation from accepted practices within the academic community is not trivially easy (which is one reason people have argued against appending the “serious deviations” clause to fabrication, falsification, and plagiarism in official definitions of scientific misconduct). Much turns on the word “accepted” here. Are we talking about the practices a scientific or academic community accepts as what members of the community ought to do, or about practices that are “accepted” insofar as members of the community actually do them or are aware of others doing them (and don’t do a whole lot to stop them)? The Investigatory Committee here seems to be trying to establish what the relevant scientific community accepts as good practices, but there are a few places in the report where the evidence upon which they rely may merely establish the practices the community tolerates. There is a related question about whether the practices the community accepts as good can be counted on reliably to produce the good outcomes the community seems to assume they do, something I imagine people will want to discuss in the comments.
Let’s dig in. Because of how much there is to discuss, we’ll take it in three posts. This post will focus on the committee’s interviews with Dr. Mann and with Dr. William Easterling, Dean, College of Earth and Mineral Sciences, The Pennsylvania State University (and Mann’s boss, to the degree that the Dean of one’s College is one’s boss).
The second post will examine the committee’s interviews with Dr. William Curry, Senior Scientist, Geology and Geophysics Department, Woods Hole Oceanographic Institution; Dr. Jerry McManus, Professor, Department of Earth and Environmental Sciences, Columbia University; and Dr. Richard Lindzen, Alfred P. Sloan Professor, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology.
The third post will then examine the other sources of information besides the interviews that the Investigatory Committee relied upon to establish what counts as accepted practices within the academic community (and specifically within the community of climate scientists) for proposing, conducting, or reporting research. All blockquotes from here on out are from the Investigatory Committee’s final report unless otherwise noted.
Shrinking budgets + skyrocketing subscription fees = UC boycott of NPG.
Economic recovery has not yet made its presence felt at public universities in California. (Indeed, at least in the California State University system, all things budgetary are going to be significantly worse in the next academic year, not better.)
This means it’s not a great time for purveyors of electronic journals to present academic libraries in public university systems with big increases in subscription prices. Yet Nature Publishing Group has, apparently, done just that by some 400%. And, as noted by Christina Pikas and Dorothea Salo and Jennifer Howard in The Chronicle of Higher Education, the University of California system has decided that what NPG is offering is not worth the asking price.
Which means a system-wide boycott of NPG journals is being organized, as outlined in this letter (PDF) from the executive director of the California Digital Library, the chair of the University Committee on Library and Scholarly Communication, and the convener of the University Librarians Council.
Interestingly, the boycott goes further than just encouraging UC libraries to drop their costly subscriptions to NPG journals. From the letter: